
Mixed Integer Linear Programming
with Python

Haroldo G. Santos Túlio A.M. Toffolo

Nov 10, 2020





Contents:

1 Introduction 1
1.1 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Installation 3
2.1 Gurobi Installation and Configuration (optional) . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Pypy installation (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Using your own CBC binaries (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Quick start 5
3.1 Creating Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.3 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Saving, Loading and Checking Model Properties . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Optimizing and Querying Optimization Results . . . . . . . . . . . . . . . . . . . . . . . 7

3.3.1 Performance Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Modeling Examples 9
4.1 The 0/1 Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 The Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 n-Queens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Frequency Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Resource Constrained Project Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6 Job Shop Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.7 Cutting Stock / One-dimensional Bin Packing Problem . . . . . . . . . . . . . . . . . . . 21
4.8 Two-Dimensional Level Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.9 Plant Location with Non-Linear Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Special Ordered Sets 29

6 Developing Customized Branch-&-Cut algorithms 31
6.1 Cutting Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Cut Callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Lazy Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4 Providing initial feasible solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Benchmarks 39
7.1 n-Queens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 External Documentation/Examples 41

9 Classes 43
9.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.2 LinExpr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

i



9.3 LinExprTensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.4 Var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.5 Constr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.6 Column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.7 ConflictGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.8 VarList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.9 ConstrList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.10 ConstrsGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.11 IncumbentUpdater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.12 CutType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.13 CutPool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.14 OptimizationStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.15 SearchEmphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.16 LP_Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.17 ProgressLog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.18 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.19 Useful functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Bibliography 63

Python Module Index 65

Index 67

ii



Chapter 1

Introduction

The Python-MIP package provides tools for modeling and solving Mixed-Integer Linear Programming
Problems (MIPs) [Wols98] in Python. The default installation includes the COIN-OR Linear Pro-
gramming Solver - CLP, which is currently the fastest open source linear programming solver and the
COIN-OR Branch-and-Cut solver - CBC, a highly configurable MIP solver. It also works with the state-
of-the-art Gurobi MIP solver. Python-MIP was written in modern, typed Python and works with the
fast just-in-time Python compiler Pypy.

In the modeling layer, models can be written very concisely, as in high-level mathematical programming
languages such as MathProg. Modeling examples for some applications can be viewed in Chapter 4 .

Python-MIP eases the development of high-performance MIP based solvers for custom applications
by providing a tight integration with the branch-and-cut algorithms of the supported solvers. Strong
formulations with an exponential number of constraints can be handled by the inclusion of Cut Generators
and Lazy Constraints. Heuristics can be integrated for providing initial feasible solutions to the MIP
solver. These features can be used in both solver engines, CBC and GUROBI, without changing a single
line of code.

This document is organized as follows: in the next Chapter installation and configuration instructions
for different platforms are presented. In Chapter 3 an overview of some common model creation and
optimization code included. Commented examples are included in Chapter 4 . Chapter 5 includes some
common solver customizations that can be done to improve the performance of application specific
solvers. Finally, the detailed reference information for the main classes is included in Chapter 6 .

1.1 Acknowledgments

We would like to thank for the support of the Combinatorial Optimization and Decision Support (CODeS)
research group in KU Leuven through the senior research fellowship of Prof. Haroldo in 2018-2019,
CNPq “Produtividade em Pesquisa” grant, FAPEMIG and the GOAL research group in the Computing
Department of UFOP.
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Chapter 2

Installation

Python-MIP requires Python 3.5 or newer. Since Python-MIP is included in the Python Package Index,
once you have a Python installation, installing it is as easy as entering in the command prompt:

pip install mip

If the command fails, it may be due to lack of permission to install globally available Python modules.
In this case, use:

pip install mip --user

The default installation includes pre-compiled libraries of the MIP Solver CBC for Windows, Linux
and MacOS. If you have the commercial solver Gurobi installed in your computer, Python-MIP will
automatically use it as long as it finds the Gurobi dynamic loadable library. Gurobi is free for academic
use and has an outstanding performance for solving MIPs. Instructions to make it accessible on different
operating systems are included bellow.

2.1 Gurobi Installation and Configuration (optional)

For the installation of Gurobi you can look at the Quickstart guide for your operating system. Python-
MIP will automatically find your Gurobi installation as long as you define the GUROBI_HOME environment
variable indicating where Gurobi was installed.

2.2 Pypy installation (optional)

Python-MIP is compatible with the just-in-time Python compiler Pypy. Generally, Python code executes
much faster in Pypy. Pypy is also more memory efficient. To install Python-MIP as a Pypy package,
just call (add --user may be necessary also):

pypy3 -m pip install mip

3
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2.3 Using your own CBC binaries (optional)

Python-MIP provides CBC binaries for 64 bits versions of MacOS, Linux and Windows that run on Intel
hardware. These binaries may not be suitable for you in some cases:

a) if you plan to use Python-MIP in another platform, such as the Raspberry Pi, a 32 bits operating
system or FreeBSD, for example;

b) if you want to build CBC binaries with special optimizations for your hardware, i.e., using the
-march=native option in GCC, you may also want to enable some optimizations for CLP, such as
the use of the parallel AVX2 instructions, available in modern hardware;

c) if you want use CBC binaries built with debug information, to help elucidating some bug.

In the CBC page page there are instructions on how to build CBC from source on Unix like platforms and
on Windows. Coinbrew is a script that makes it easier the task of downloading and building CBC and its
dependencies. The commands bellow can be used to download and build CBC on Ubuntu Linux, slightly
different packages names may be used in different distributions. Comments are included describing some
possible customizations.

# install dependencies to build
sudo apt-get install gcc g++ gfortran libgfortran-9-dev liblapack-dev libamd2 libcholmod3␣
→˓libmetis-dev libsuitesparse-dev libnauty2-dev git
# directory to download and compile CBC
mkdir -p ~/build ; cd ~/build
# download latest version of coinbrew
wget -nH https://raw.githubusercontent.com/coin-or/coinbrew/master/coinbrew
# download CBC and its dependencies with coinbrew
bash coinbrew fetch Cbc@master --no-prompt
# build, replace prefix with your install directory, add --enable-debug if necessary
bash coinbrew build Cbc@master --no-prompt --prefix=/home/haroldo/prog/ --tests=none --enable-
→˓cbc-parallel --enable-relocatable

Python-MIP uses the CbcSolver shared library to communicate with CBC. In Linux, this file is named
libCbcSolver.so, in Windows and MacOS the extension should be .dll and .dylp, respectively. To
force Python-MIP to use your freshly compiled CBC binaries, you can set the PMIP_CBC_LIBRARY envi-
ronment variable, indicating the full path to this shared library. In Linux, for example, if you installed
your CBC binaries in /home/haroldo/prog/, you could use:

export PMIP_CBC_LIBRARY="/home/haroldo/prog/lib/libCbcSolver.so"

Please note that CBC uses multiple libraries which are installed in the same directory. You may also need
to set one additional environment variable specifying that this directory also contains shared libraries
that should be accessible. In Linux and MacOS this variable is LD_LIBRARY_PATH, on Windows the PATH
environment variable should be set.

export LD_LIBRARY_PATH="/home/haroldo/prog/lib/":$LD_LIBRARY_PATH

In Linux, to make these changes persistent, you may also want to add the export lines to your .bashrc.

4 Chapter 2. Installation
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Chapter 3

Quick start

This chapter presents the main components needed to build and optimize models using Python-MIP. A
full description of the methods and their parameters can be found at Chapter 4 .

The first step to enable Python-MIP in your Python code is to add:

from mip import *

When loaded, Python-MIP will display its installed version:

Using Python-MIP package version 1.6.2

3.1 Creating Models

The model class represents the optimization model. The code below creates an empty Mixed-Integer
Linear Programming problem with default settings.

m = Model()

By default, the optimization sense is set to Minimize and the selected solver is set to CBC. If Gurobi is
installed and configured, it will be used instead. You can change the model objective sense or force the
selection of a specific solver engine using additional parameters for the constructor:

m = Model(sense=MAXIMIZE, solver_name=CBC) # use GRB for Gurobi

After creating the model, you should include your decision variables, objective function and constraints.
These tasks will be discussed in the next sections.

3.1.1 Variables

Decision variables are added to the model using the add_var() method. Without parameters, a single
variable with domain in R+ is created and its reference is returned:

x = m.add_var()

By using Python list initialization syntax, you can easily create a vector of variables. Let’s say that your
model will have n binary decision variables (n=10 in the example below) indicating if each one of 10
items is selected or not. The code below creates 10 binary variables y[0], . . . , y[n-1] and stores their
references in a list.

n = 10
y = [ m.add_var(var_type=BINARY) for i in range(n) ]

5
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Additional variable types are CONTINUOUS (default) and INTEGER. Some additional properties that can be
specified for variables are their lower and upper bounds (lb and ub , respectively), and names (property
name ). Naming a variable is optional and it is particularly useful if you plan to save you model (see
Saving, Loading and Checking Model Properties) in .LP or .MPS file formats, for instance. The following
code creates an integer variable named zCost which is restricted to be in range {−10, . . . , 10}. Note that
the variable’s reference is stored in a Python variable named z.

z = m.add_var(name='zCost', var_type=INTEGER, lb=-10, ub=10)

You don’t need to store references for variables, even though it is usually easier to do so to write
constraints. If you do not store these references, you can get them afterwards using the Model function
var_by_name() . The following code retrieves the reference of a variable named zCost and sets its upper
bound to 5:

vz = m.var_by_name('zCost')
vz.ub = 5

3.1.2 Constraints

Constraints are linear expressions involving variables, a sense of ==, <= or >= for equal, less or equal and
greater or equal, respectively, and a constant. The constraint 𝑥 + 𝑦 ≤ 10 can be easily included within
model m:

m += x + y <= 10

Summation expressions can be implemented with the function xsum() . If for a knapsack problem with 𝑛
items, each one with weight 𝑤𝑖, we would like to include a constraint to select items with binary variables
𝑥𝑖 respecting the knapsack capacity 𝑐, then the following code could be used to include this constraint
within the model m:

m += xsum(w[i]*x[i] for i in range(n)) <= c

Conditional inclusion of variables in the summation is also easy. Let’s say that only even indexed items
are subjected to the capacity constraint:

m += xsum(w[i]*x[i] for i in range(n) if i%2 == 0) <= c

Finally, it may be useful to name constraints. To do so is straightforward: include the constraint’s name
after the linear expression, separating it with a comma. An example is given below:

m += xsum(w[i]*x[i] for i in range(n) if i%2 == 0) <= c, 'even_sum'

As with variables, reference of constraints can be retrieved by their names. Model function
constr_by_name() is responsible for this:

constraint = m.constr_by_name('even_sum')

3.1.3 Objective Function

By default a model is created with the Minimize sense. The following code alters the objective function
to

∑︀𝑛−1
𝑖=0 𝑐𝑖𝑥𝑖 by setting the objective attribute of our example model m:

m.objective = xsum(c[i]*x[i] for i in range(n))

To specify whether the goal is to Minimize or Maximize the objetive function, two useful functions were
included: minimize() and maximize() . Below are two usage examples:

6 Chapter 3. Quick start
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m.objective = minimize(xsum(c[i]*x[i] for i in range(n)))

m.objective = maximize(xsum(c[i]*x[i] for i in range(n)))

You can also change the optimization direction by setting the sense model property to MINIMIZE or
MAXIMIZE.

3.2 Saving, Loading and Checking Model Properties

Model methods write() and read() can be used to save and load, respectively, MIP models. Supported
file formats for models are the LP file format, which is more readable and suitable for debugging, and
the MPS file format, which is recommended for extended compatibility, since it is an older and more
widely adopted format. When calling the write() method, the file name extension (.lp or .mps) is used
to define the file format. Therefore, to save a model m using the lp file format to the file model.lp we can
use:

m.write('model.lp')

Likewise, we can read a model, which results in creating variables and constraints from the LP or MPS file
read. Once a model is read, all its attributes become available, like the number of variables, constraints
and non-zeros in the constraint matrix:

m.read('model.lp')
print('model has {} vars, {} constraints and {} nzs'.format(m.num_cols, m.num_rows, m.num_nz))

3.3 Optimizing and Querying Optimization Results

MIP solvers execute a Branch-&-Cut (BC) algorithm that in finite time will provide the optimal solution.
This time may be, in many cases, too large for your needs. Fortunately, even when the complete tree
search is too expensive, results are often available in the beginning of the search. Sometimes a feasible
solution is produced when the first tree nodes are processed and a lot of additional effort is spent
improving the dual bound, which is a valid estimate for the cost of the optimal solution. When this
estimate, the lower bound for minimization, matches exactly the cost of the best solution found, the
upper bound, the search is concluded. For practical applications, usually a truncated search is executed.
The optimize() method, that executes the optimization of a formulation, accepts optionally processing
limits as parameters. The following code executes the branch-&-cut algorithm to solve a model m for up
to 300 seconds.

1 m.max_gap = 0.05
2 status = m.optimize(max_seconds=300)
3 if status == OptimizationStatus.OPTIMAL:
4 print('optimal solution cost {} found'.format(m.objective_value))
5 elif status == OptimizationStatus.FEASIBLE:
6 print('sol.cost {} found, best possible: {} '.format(m.objective_value, m.objective_bound))
7 elif status == OptimizationStatus.NO_SOLUTION_FOUND:
8 print('no feasible solution found, lower bound is: {} '.format(m.objective_bound))
9 if status == OptimizationStatus.OPTIMAL or status == OptimizationStatus.FEASIBLE:

10 print('solution:')
11 for v in m.vars:
12 if abs(v.x) > 1e-6: # only printing non-zeros
13 print('{} : {} '.format(v.name, v.x))

Additional processing limits may be used: max_nodes restricts the maximum number of explored nodes
in the search tree and max_solutions finishes the BC algorithm after a number of feasible solutions are
obtained. It is also wise to specify how tight the bounds should be to conclude the search. The model

3.2. Saving, Loading and Checking Model Properties 7
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attribute max_mip_gap specifies the allowable percentage deviation of the upper bound from the lower
bound for concluding the search. In our example, whenever the distance of the lower and upper bounds
is less or equal 5% (see line 1), the search can be finished.

The optimize() method returns the status (OptimizationStatus ) of the BC search: OPTIMAL if the
search was concluded and the optimal solution was found; FEASIBLE if a feasible solution was found
but there was no time to prove whether this solution was optimal or not; NO_SOLUTION_FOUND if in
the truncated search no solution was found; INFEASIBLE or INT_INFEASIBLE if no feasible solution
exists for the model; UNBOUNDED if there are missing constraints or ERROR if some error occurred during
optimization. In the example above, if a feasible solution is available (line 8), variables which have
value different from zero are printed. Observe also that even when no feasible solution is available the
dual bound (lower bound in the case of minimization) is available (line 8): if a truncated execution was
performed, i.e., the solver stopped due to the time limit, you can check this dual bound which is an
estimate of the quality of the solution found checking the gap property.

During the tree search, it is often the case that many different feasible solutions are found. The solver
engine stores this solutions in a solution pool. The following code prints all routes found while optimizing
the Traveling Salesman Problem.

for k in range(model.num_solutions):
print('route {} with length {} '.format(k, model.objective_values[k]))
for (i, j) in product(range(n), range(n)):

if x[i][j].xi(k) >= 0.98:
print('\tarc ({} ,{} )'.format(i,j))

3.3.1 Performance Tuning

Tree search algorithms of MIP solvers deliver a set of improved feasible solutions and lower bounds.
Depending on your application you will be more interested in the quick production of feasible solutions
than in improved lower bounds that may require expensive computations, even if in the long term these
computations prove worthy to prove the optimality of the solution found. The model property emphasis
provides three different settings:

0. default setting: tries to balance between the search of improved feasible solutions and improved
lower bounds;

1. feasibility: focus on finding improved feasible solutions in the first moments of the search process,
activates heuristics;

2. optimality: activates procedures that produce improved lower bounds, focusing in pruning the
search tree even if the production of the first feasible solutions is delayed.

Changing this setting to 1 or 2 triggers the activation/deactivation of several algorithms that are pro-
cessed at each node of the search tree that impact the solver performance. Even though in average
these settings change the solver performance as described previously, depending on your formulation the
impact of these changes may be very different and it is usually worth to check the solver behavior with
these different settings in your application.

Another parameter that may be worth tuning is the cuts attribute, that controls how much computa-
tional effort should be spent in generating cutting planes.

8 Chapter 3. Quick start



Chapter 4

Modeling Examples

This chapter includes commented examples on modeling and solving optimization problems with Python-
MIP.

4.1 The 0/1 Knapsack Problem

As a first example, consider the solution of the 0/1 knapsack problem: given a set 𝐼 of items, each one
with a weight 𝑤𝑖 and estimated profit 𝑝𝑖, one wants to select a subset with maximum profit such that the
summation of the weights of the selected items is less or equal to the knapsack capacity 𝑐. Considering a
set of decision binary variables 𝑥𝑖 that receive value 1 if the 𝑖-th item is selected, or 0 if not, the resulting
mathematical programming formulation is:

Maximize: ∑︁
𝑖∈𝐼

𝑝𝑖 · 𝑥𝑖

Subject to: ∑︁
𝑖∈𝐼

𝑤𝑖 · 𝑥𝑖 ≤ 𝑐

𝑥𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐼

The following python code creates, optimizes and prints the optimal solution for the 0/1 knapsack
problem

Listing 1: Solves the 0/1 knapsack problem: knapsack.py

1 from mip import Model, xsum, maximize, BINARY
2

3 p = [10, 13, 18, 31, 7, 15]
4 w = [11, 15, 20, 35, 10, 33]
5 c, I = 47, range(len(w))
6

7 m = Model("knapsack")
8

9 x = [m.add_var(var_type=BINARY) for i in I]
10

11 m.objective = maximize(xsum(p[i] * x[i] for i in I))
12

13 m += xsum(w[i] * x[i] for i in I) <= c
14

15 m.optimize()
16

(continues on next page)

9
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(continued from previous page)

17 selected = [i for i in I if x[i].x >= 0.99]
18 print("selected items: {} ".format(selected))
19

Line 3 imports the required classes and definitions from Python-MIP. Lines 5-8 define the problem data.
Line 10 creates an empty maximization problem m with the (optional) name of “knapsack”. Line 12
adds the binary decision variables to model m and stores their references in a list x. Line 14 defines the
objective function of this model and line 16 adds the capacity constraint. The model is optimized in line
18 and the solution, a list of the selected items, is computed at line 20.

4.2 The Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most studied combinatorial optimization problems,
with the first computational studies dating back to the 50s [Dantz54], [Appleg06]. To to illustrate this
problem, consider that you will spend some time in Belgium and wish to visit some of its main tourist
attractions, depicted in the map bellow:

You want to find the shortest possible tour to visit all these places. More formally, considering 𝑛 points
𝑉 = {0, . . . , 𝑛 − 1} and a distance matrix 𝐷𝑛×𝑛 with elements 𝑐𝑖,𝑗 ∈ R+, a solution consists in a set
of exactly 𝑛 (origin, destination) pairs indicating the itinerary of your trip, resulting in the following
formulation:

Minimize: ∑︁
𝑖∈𝐼,𝑗∈𝐼

𝑐𝑖,𝑗 . 𝑥𝑖,𝑗

Subject to: ∑︁
𝑗∈𝑉 ∖{𝑖}

𝑥𝑖,𝑗 = 1 ∀𝑖 ∈ 𝑉

∑︁
𝑖∈𝑉 ∖{𝑗}

𝑥𝑖,𝑗 = 1 ∀𝑗 ∈ 𝑉

𝑦𝑖 − (𝑛 + 1). 𝑥𝑖,𝑗 ≥ 𝑦𝑗 − 𝑛 ∀𝑖 ∈ 𝑉 ∖ {0}, 𝑗 ∈ 𝑉 ∖ {0, 𝑖}
𝑥𝑖,𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉

𝑦𝑖 ≥ 0 ∀𝑖 ∈ 𝑉

The first two sets of constraints enforce that we leave and arrive only once at each point. The optimal
solution for the problem including only these constraints could result in a solution with sub-tours, such
as the one bellow.
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To enforce the production of connected routes, additional variables 𝑦𝑖 ≥ 0 are included in the model
indicating the sequential order of each point in the produced route. Point zero is arbitrarily selected
as the initial point and conditional constraints linking variables 𝑥𝑖,𝑗 , 𝑦𝑖 and 𝑦𝑗 are created for all nodes
except the the initial one to ensure that the selection of the arc 𝑥𝑖,𝑗 implies that 𝑦𝑗 ≥ 𝑦𝑖 + 1.

The Python code to create, optimize and print the optimal route for the TSP is included bellow:

Listing 2: Traveling salesman problem solver with compact formu-
lation: tsp-compact.py

1 from itertools import product
2 from sys import stdout as out
3 from mip import Model, xsum, minimize, BINARY
4

5 # names of places to visit
6 places = ['Antwerp', 'Bruges', 'C-Mine', 'Dinant', 'Ghent',
7 'Grand-Place de Bruxelles', 'Hasselt', 'Leuven',
8 'Mechelen', 'Mons', 'Montagne de Bueren', 'Namur',
9 'Remouchamps', 'Waterloo']

10

11 # distances in an upper triangular matrix
12 dists = [[83, 81, 113, 52, 42, 73, 44, 23, 91, 105, 90, 124, 57],
13 [161, 160, 39, 89, 151, 110, 90, 99, 177, 143, 193, 100],
14 [90, 125, 82, 13, 57, 71, 123, 38, 72, 59, 82],
15 [123, 77, 81, 71, 91, 72, 64, 24, 62, 63],
16 [51, 114, 72, 54, 69, 139, 105, 155, 62],
17 [70, 25, 22, 52, 90, 56, 105, 16],
18 [45, 61, 111, 36, 61, 57, 70],
19 [23, 71, 67, 48, 85, 29],
20 [74, 89, 69, 107, 36],
21 [117, 65, 125, 43],
22 [54, 22, 84],
23 [60, 44],
24 [97],
25 []]
26

27 # number of nodes and list of vertices
28 n, V = len(dists), set(range(len(dists)))
29

30 # distances matrix
31 c = [[0 if i == j
32 else dists[i][j-i-1] if j > i
33 else dists[j][i-j-1]
34 for j in V] for i in V]
35

(continues on next page)
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(continued from previous page)

36 model = Model()
37

38 # binary variables indicating if arc (i,j) is used on the route or not
39 x = [[model.add_var(var_type=BINARY) for j in V] for i in V]
40

41 # continuous variable to prevent subtours: each city will have a
42 # different sequential id in the planned route except the first one
43 y = [model.add_var() for i in V]
44

45 # objective function: minimize the distance
46 model.objective = minimize(xsum(c[i][j]*x[i][j] for i in V for j in V))
47

48 # constraint : leave each city only once
49 for i in V:
50 model += xsum(x[i][j] for j in V - {i}) == 1
51

52 # constraint : enter each city only once
53 for i in V:
54 model += xsum(x[j][i] for j in V - {i}) == 1
55

56 # subtour elimination
57 for (i, j) in product(V - {0}, V - {0}):
58 if i != j:
59 model += y[i] - (n+1)*x[i][j] >= y[j]-n
60

61 # optimizing
62 model.optimize()
63

64 # checking if a solution was found
65 if model.num_solutions:
66 out.write('route with total distance %g found: %s '
67 % (model.objective_value, places[0]))
68 nc = 0
69 while True:
70 nc = [i for i in V if x[nc][i].x >= 0.99][0]
71 out.write(' -> %s ' % places[nc])
72 if nc == 0:
73 break
74 out.write('\n')

In line 10 names of the places to visit are informed. In line 17 distances are informed in an upper
triangular matrix. Line 33 stores the number of nodes and a list with nodes sequential ids starting from
0. In line 36 a full 𝑛 × 𝑛 distance matrix is filled. Line 41 creates an empty MIP model. In line 44
all binary decision variables for the selection of arcs are created and their references are stored a 𝑛× 𝑛
matrix named x. Differently from the 𝑥 variables, 𝑦 variables (line 48) are not required to be binary or
integral, they can be declared just as continuous variables, the default variable type. In this case, the
parameter var_type can be omitted from the add_var call.

Line 51 sets the total traveled distance as objective function and lines 54-62 include the constraints. In
line 66 we call the optimizer specifying a time limit of 30 seconds. This will surely not be necessary for
our Belgium example, which will be solved instantly, but may be important for larger problems: even
though high quality solutions may be found very quickly by the MIP solver, the time required to prove
that the current solution is optimal may be very large. With a time limit, the search is truncated and
the best solution found during the search is reported. In line 69 we check for the availability of a feasible
solution. To repeatedly check for the next node in the route we check for the solution value (.x attribute)
of all variables of outgoing arcs of the current node in the route (line 73). The optimal solution for our
trip has length 547 and is depicted bellow:
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4.3 n-Queens

In the 𝑛-queens puzzle 𝑛 chess queens should to be placed in a board with 𝑛× 𝑛 cells in a way that no
queen can attack another, i.e., there must be at most one queen per row, column and diagonal. This is a
constraint satisfaction problem: any feasible solution is acceptable and no objective function is defined.
The following binary programming formulation can be used to solve this problem:

𝑛∑︁
𝑗=1

𝑥𝑖𝑗 = 1 ∀𝑖 ∈ {1, . . . , 𝑛}

𝑛∑︁
𝑖=1

𝑥𝑖𝑗 = 1 ∀𝑗 ∈ {1, . . . , 𝑛}

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1:𝑖−𝑗=𝑘

𝑥𝑖,𝑗 ≤ 1 ∀𝑖 ∈ {1, . . . , 𝑛}, 𝑘 ∈ {2 − 𝑛, . . . , 𝑛− 2}

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1:𝑖+𝑗=𝑘

𝑥𝑖,𝑗 ≤ 1 ∀𝑖 ∈ {1, . . . , 𝑛}, 𝑘 ∈ {3, . . . , 𝑛 + 𝑛− 1}

𝑥𝑖,𝑗 ∈ {0, 1} ∀𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . , 𝑛}

The following code builds the previous model, solves it and prints the queen placements:

Listing 3: Solver for the n-queens problem: queens.py

1 from sys import stdout
2 from mip import Model, xsum, BINARY
3

4 # number of queens
5 n = 40
6

7 queens = Model()
8

9 x = [[queens.add_var('x({} ,{} )'.format(i, j), var_type=BINARY)
10 for j in range(n)] for i in range(n)]
11

12 # one per row
13 for i in range(n):
14 queens += xsum(x[i][j] for j in range(n)) == 1, 'row({} )'.format(i)
15

16 # one per column
17 for j in range(n):

(continues on next page)
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(continued from previous page)

18 queens += xsum(x[i][j] for i in range(n)) == 1, 'col({} )'.format(j)
19

20 # diagonal \
21 for p, k in enumerate(range(2 - n, n - 2 + 1)):
22 queens += xsum(x[i][i - k] for i in range(n)
23 if 0 <= i - k < n) <= 1, 'diag1({} )'.format(p)
24

25 # diagonal /
26 for p, k in enumerate(range(3, n + n)):
27 queens += xsum(x[i][k - i] for i in range(n)
28 if 0 <= k - i < n) <= 1, 'diag2({} )'.format(p)
29

30 queens.optimize()
31

32 if queens.num_solutions:
33 stdout.write('\n')
34 for i, v in enumerate(queens.vars):
35 stdout.write('O ' if v.x >= 0.99 else '. ')
36 if i % n == n-1:
37 stdout.write('\n')

4.4 Frequency Assignment

The design of wireless networks, such as cell phone networks, involves assigning communication frequen-
cies to devices. These communication frequencies can be separated into channels. The geographical area
covered by a network can be divided into hexagonal cells, where each cell has a base station that covers a
given area. Each cell requires a different number of channels, based on usage statistics and each cell has
a set of neighbor cells, based on the geographical distances. The design of an efficient mobile network
involves selecting subsets of channels for each cell, avoiding interference between calls in the same cell
and in neighboring cells. Also, for economical reasons, the total bandwidth in use must be minimized,
i.e., the total number of different channels used. One of the first real cases discussed in literature are the
Philadelphia [Ande73] instances, with the structure depicted bellow:
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Each cell has a demand with the required number of channels drawn at the center of the hexagon, and
a sequential id at the top left corner. Also, in this example, each cell has a set of at most 6 adjacent
neighboring cells (distance 1). The largest demand (8) occurs on cell 2. This cell has the following
adjacent cells, with distance 1: (1, 6). The minimum distances between channels in the same cell in this
example is 3 and channels in neighbor cells should differ by at least 2 units.

A generalization of this problem (not restricted to the hexagonal topology), is the Bandwidth Multicol-
oring Problem (BMCP), which has the following input data:

𝑁 : set of cells, numbered from 1 to 𝑛;

𝑟𝑖 ∈ Z+: demand of cell 𝑖 ∈ 𝑁 , i.e., the required number of channels;

𝑑𝑖,𝑗 ∈ Z+: minimum distance between channels assigned to nodes 𝑖 and 𝑗, 𝑑𝑖,𝑖 indicates the minimum
distance between different channels allocated to the same cell.

Given an upper limit 𝑢 on the maximum number of channels 𝑈 = {1, . . . , 𝑢} used, which can be obtained
using a simple greedy heuristic, the BMPC can be formally stated as the combinatorial optimization
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problem of defining subsets of channels 𝐶1, . . . , 𝐶𝑛 while minimizing the used bandwidth and avoiding
interference:

Minimize:
max

𝑐∈𝐶1∪𝐶2,...,𝐶𝑛

𝑐

Subject to:
| 𝑐1 − 𝑐2 | ≥ 𝑑𝑖,𝑗 ∀(𝑖, 𝑗) ∈ 𝑁 ×𝑁, (𝑐1, 𝑐2) ∈ 𝐶𝑖 × 𝐶𝑗

𝐶𝑖 ⊆ 𝑈 ∀𝑖 ∈ 𝑁

| 𝐶𝑖 | = 𝑟𝑖 ∀𝑖 ∈ 𝑁

This problem can be formulated as a mixed integer program with binary variables indicating the compo-
sition of the subsets: binary variables 𝑥(𝑖,𝑐) indicate if for a given cell 𝑖 channel 𝑐 is selected (𝑥(𝑖,𝑐) = 1)
or not (𝑥(𝑖,𝑐) = 0). The BMCP can be modeled with the following MIP formulation:

Minimize:
𝑧

Subject to:
𝑢∑︁

𝑐=1

𝑥(𝑖,𝑐) = 𝑟𝑖 ∀ 𝑖 ∈ 𝑁

𝑧 ≥ 𝑐 · 𝑥(𝑖,𝑐) ∀ 𝑖 ∈ 𝑁, 𝑐 ∈ 𝑈

𝑥(𝑖,𝑐) + 𝑥(𝑗,𝑐′) ≤ 1 ∀ (𝑖, 𝑗, 𝑐, 𝑐′) ∈ 𝑁 ×𝑁 × 𝑈 × 𝑈 : 𝑖 ̸= 𝑗∧ | 𝑐− 𝑐′ |< 𝑑(𝑖,𝑗)

𝑥(𝑖,𝑐 + 𝑥(𝑖,𝑐′) ≤ 1 ∀𝑖, 𝑐 ∈ 𝑁 × 𝑈, 𝑐′ ∈ {𝑐,+1 . . . ,min(𝑐 + 𝑑𝑖,𝑖, 𝑢)}
𝑥(𝑖,𝑐) ∈ {0, 1} ∀ 𝑖 ∈ 𝑁, 𝑐 ∈ 𝑈

𝑧 ≥ 0

Follows the example of a solver for the BMCP using the previous MIP formulation:

Listing 4: Solver for the bandwidth multi coloring problem:
bmcp.py

1 from itertools import product
2 from mip import Model, xsum, minimize, BINARY
3

4 # number of channels per node
5 r = [3, 5, 8, 3, 6, 5, 7, 3]
6

7 # distance between channels in the same node (i, i) and in adjacent nodes
8 # 0 1 2 3 4 5 6 7
9 d = [[3, 2, 0, 0, 2, 2, 0, 0], # 0

10 [2, 3, 2, 0, 0, 2, 2, 0], # 1
11 [0, 2, 3, 0, 0, 0, 3, 0], # 2
12 [0, 0, 0, 3, 2, 0, 0, 2], # 3
13 [2, 0, 0, 2, 3, 2, 0, 0], # 4
14 [2, 2, 0, 0, 2, 3, 2, 0], # 5
15 [0, 2, 2, 0, 0, 2, 3, 0], # 6
16 [0, 0, 0, 2, 0, 0, 0, 3]] # 7
17

18 N = range(len(r))
19

20 # in complete applications this upper bound should be obtained from a feasible
21 # solution produced with some heuristic
22 U = range(sum(d[i][j] for (i, j) in product(N, N)) + sum(el for el in r))
23

24 m = Model()
25

26 x = [[m.add_var('x({} ,{} )'.format(i, c), var_type=BINARY)
27 for c in U] for i in N]

(continues on next page)
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(continued from previous page)

28

29 z = m.add_var('z')
30 m.objective = minimize(z)
31

32 for i in N:
33 m += xsum(x[i][c] for c in U) == r[i]
34

35 for i, j, c1, c2 in product(N, N, U, U):
36 if i != j and c1 <= c2 < c1+d[i][j]:
37 m += x[i][c1] + x[j][c2] <= 1
38

39 for i, c1, c2 in product(N, U, U):
40 if c1 < c2 < c1+d[i][i]:
41 m += x[i][c1] + x[i][c2] <= 1
42

43 for i, c in product(N, U):
44 m += z >= (c+1)*x[i][c]
45

46 m.optimize(max_nodes=30)
47

48 if m.num_solutions:
49 for i in N:
50 print('Channels of node %d : %s ' % (i, [c for c in U if x[i][c].x >=
51 0.99]))

4.5 Resource Constrained Project Scheduling

The Resource-Constrained Project Scheduling Problem (RCPSP) is a combinatorial optimization prob-
lem that consists of finding a feasible scheduling for a set of 𝑛 jobs subject to resource and precedence
constraints. Each job has a processing time, a set of successors jobs and a required amount of differ-
ent resources. Resources may be scarce but are renewable at each time period. Precedence constraints
between jobs mean that no jobs may start before all its predecessors are completed. The jobs must be
scheduled non-preemptively, i.e., once started, their processing cannot be interrupted.

The RCPSP has the following input data:

𝒥 jobs set

ℛ renewable resources set

𝒮 set of precedences between jobs (𝑖, 𝑗) ∈ 𝒥 × 𝒥

𝒯 planning horizon: set of possible processing times for jobs

𝑝𝑗 processing time of job 𝑗

𝑢(𝑗,𝑟) amount of resource 𝑟 required for processing job 𝑗

𝑐𝑟 capacity of renewable resource 𝑟

In addition to the jobs that belong to the project, the set 𝒥 contains jobs 0 and 𝑛+ 1, which are dummy
jobs that represent the beginning and the end of the planning, respectively. The processing time for the
dummy jobs is always zero and these jobs do not consume resources.

A binary programming formulation was proposed by Pritsker et al. [PWW69]. In this formulation,
decision variables 𝑥𝑗𝑡 = 1 if job 𝑗 is assigned to begin at time 𝑡; otherwise, 𝑥𝑗𝑡 = 0. All jobs must
finish in a single instant of time without violating precedence constraints while respecting the amount of
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available resources. The model proposed by Pristker can be stated as follows:

Minimize∑︁
𝑡∈𝒯

𝑡 · 𝑥(𝑛+1,𝑡)

Subject to:∑︁
𝑡∈𝒯

𝑥(𝑗,𝑡) = 1 ∀𝑗 ∈ 𝐽

∑︁
𝑗∈𝐽

𝑡∑︁
𝑡2=𝑡−𝑝𝑗+1

𝑢(𝑗,𝑟)𝑥(𝑗,𝑡2) ≤ 𝑐𝑟 ∀𝑡 ∈ 𝒯 , 𝑟 ∈ 𝑅

∑︁
𝑡∈𝒯

𝑡 · 𝑥(𝑠,𝑡) −
∑︁
𝑡∈𝒯

𝑡 · 𝑥(𝑗,𝑡) ≥ 𝑝𝑗 ∀(𝑗, 𝑠) ∈ 𝑆

𝑥(𝑗,𝑡) ∈ {0, 1} ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝒯

An instance is shown below. The figure shows a graph where jobs in 𝒥 are represented by nodes and
precedence relations 𝒮 are represented by directed edges. The time-consumption 𝑝𝑗 and all information
concerning resource consumption 𝑢(𝑗,𝑟) are included next to the graph. This instance contains 10 jobs
and 2 renewable resources, ℛ = {𝑟1, 𝑟2}, where 𝑐1 = 6 and 𝑐2 = 8. Finally, a valid (but weak) upper
bound on the time horizon 𝒯 can be estimated by summing the duration of all jobs.

The Python code for creating the binary programming model, optimize it and print the optimal schedul-
ing for RCPSP is included below:

Listing 5: Solves the Resource Constrained Project Scheduling
Problem: rcpsp.py

1 from itertools import product
2 from mip import Model, xsum, BINARY
3

4 n = 10 # note there will be exactly 12 jobs (n=10 jobs plus the two 'dummy' ones)
5

6 p = [0, 3, 2, 5, 4, 2, 3, 4, 2, 4, 6, 0]
7

8 u = [[0, 0], [5, 1], [0, 4], [1, 4], [1, 3], [3, 2], [3, 1], [2, 4],
9 [4, 0], [5, 2], [2, 5], [0, 0]]

10

11 c = [6, 8]
12

(continues on next page)
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(continued from previous page)

13 S = [[0, 1], [0, 2], [0, 3], [1, 4], [1, 5], [2, 9], [2, 10], [3, 8], [4, 6],
14 [4, 7], [5, 9], [5, 10], [6, 8], [6, 9], [7, 8], [8, 11], [9, 11], [10, 11]]
15

16 (R, J, T) = (range(len(c)), range(len(p)), range(sum(p)))
17

18 model = Model()
19

20 x = [[model.add_var(name="x({} ,{} )".format(j, t), var_type=BINARY) for t in T] for j in J]
21

22 model.objective = xsum(t * x[n + 1][t] for t in T)
23

24 for j in J:
25 model += xsum(x[j][t] for t in T) == 1
26

27 for (r, t) in product(R, T):
28 model += (
29 xsum(u[j][r] * x[j][t2] for j in J for t2 in range(max(0, t - p[j] + 1), t + 1))
30 <= c[r])
31

32 for (j, s) in S:
33 model += xsum(t * x[s][t] - t * x[j][t] for t in T) >= p[j]
34

35 model.optimize()
36

37 print("Schedule: ")
38 for (j, t) in product(J, T):
39 if x[j][t].x >= 0.99:
40 print("Job {} : begins at t={} and finishes at t={} ".format(j, t, t+p[j]))
41 print("Makespan = {} ".format(model.objective_value))

One optimum solution is shown bellow, from the viewpoint of resource consumption.

It is noteworthy that this particular problem instance has multiple optimal solutions. Keep in the mind
that the solver may obtain a different optimum solution.
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4.6 Job Shop Scheduling Problem

The Job Shop Scheduling Problem (JSSP) is an NP-hard problem defined by a set of jobs that must be
executed by a set of machines in a specific order for each job. Each job has a defined execution time
for each machine and a defined processing order of machines. Also, each job must use each machine
only once. The machines can only execute a job at a time and once started, the machine cannot be
interrupted until the completion of the assigned job. The objective is to minimize the makespan, i.e. the
maximum completion time among all jobs.

For instance, suppose we have 3 machines and 3 jobs. The processing order for each job is as follows
(the processing time of each job in each machine is between parenthesis):

• Job 𝑗1: 𝑚3 (2) → 𝑚1 (1) → 𝑚2 (2)

• Job 𝑗2: 𝑚2 (1) → 𝑚3 (2) → 𝑚1 (2)

• Job 𝑗3: 𝑚3 (1) → 𝑚2 (2) → 𝑚1 (1)

Bellow there are two feasible schedules:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m1 j1m1 j2m1 j3

m2 j1m2 j2m2 j3

m3 j1m3 j2m3 j3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m1 j1m1 j2m1 j3

m2 j1m2 j2m2 j3

m3 j1m3 j2m3 j3

The first schedule shows a naive solution: jobs are processed in a sequence and machines stay idle quite
often. The second solution is the optimal one, where jobs execute in parallel.

The JSSP has the following input data:

𝒥 set of jobs, 𝒥 = {1, ..., 𝑛},

ℳ set of machines, ℳ = {1, ...,𝑚},

𝑜𝑗𝑟 the machine that processes the 𝑟-th operation of job 𝑗, the sequence without repetition 𝑂𝑗 =
(𝑜𝑗1, 𝑜

𝑗
2, ..., 𝑜

𝑗
𝑚) is the processing order of 𝑗,

𝑝𝑖𝑗 non-negative integer processing time of job 𝑗 in machine 𝑖.

A JSSP solution must respect the following constraints:

• All jobs 𝑗 must be executed following the sequence of machines given by 𝑂𝑗 ,

• Each machine can process only one job at a time,

• Once a machine starts a job, it must be completed without interruptions.
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The objective is to minimize the makespan, the end of the last job to be executed. The JSSP is NP-hard
for any fixed 𝑛 ≥ 3 and also for any fixed 𝑚 ≥ 3.

The decision variables are defined by:

𝑥𝑖𝑗 starting time of job 𝑗 ∈ 𝐽 on machine 𝑖 ∈ 𝑀

𝑦𝑖𝑗𝑘 =

⎧⎪⎨⎪⎩
1, if job 𝑗 precedes job 𝑘 on machine 𝑖,

𝑖 ∈ ℳ, 𝑗, 𝑘 ∈ 𝒥 , 𝑗 ̸= 𝑘

0, otherwise

𝐶 variable for the makespan

Follows a MIP formulation [Mann60] for the JSSP. The objective function is computed in the auxiliary
variable 𝐶. The first set of constraints are the precedence constraints, that ensure that a job on a
machine only starts after the processing of the previous machine concluded. The second and third set of
disjunctive constraints ensure that only one job is processing at a given time in a given machine. The
𝑀 constant must be large enough to ensure the correctness of these constraints. A valid (but weak)
estimate for this value can be the summation of all processing times. The fourth set of constrains ensure
that the makespan value is computed correctly and the last constraints indicate variable domains.

min:
𝐶

s.t.:
𝑥𝑜𝑗𝑟𝑗

≥ 𝑥𝑜𝑗𝑟−1𝑗
+ 𝑝𝑜𝑗𝑟−1𝑗

∀𝑟 ∈ {2, ..,𝑚}, 𝑗 ∈ 𝒥

𝑥𝑖𝑗 ≥ 𝑥𝑖𝑘 + 𝑝𝑖𝑘 −𝑀 · 𝑦𝑖𝑗𝑘 ∀𝑗, 𝑘 ∈ 𝒥 , 𝑗 ̸= 𝑘, 𝑖 ∈ ℳ
𝑥𝑖𝑘 ≥ 𝑥𝑖𝑗 + 𝑝𝑖𝑗 −𝑀 · (1 − 𝑦𝑖𝑗𝑘) ∀𝑗, 𝑘 ∈ 𝒥 , 𝑗 ̸= 𝑘, 𝑖 ∈ ℳ
𝐶 ≥ 𝑥𝑜𝑗𝑚𝑗 + 𝑝𝑜𝑗𝑚𝑗 ∀𝑗 ∈ 𝒥
𝑥𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝒥 , 𝑖 ∈ ℳ
𝑦𝑖𝑗𝑘 ∈ {0, 1} ∀𝑗, 𝑘 ∈ 𝒥 , 𝑖 ∈ ℳ
𝐶 ≥ 0

The following Python-MIP code creates the previous formulation, optimizes it and prints the optimal
solution found:

Listing 6: Solves the Job Shop Scheduling Problem (exam-
ples/jssp.py)

1 from itertools import product
2 from mip import Model, BINARY
3

4 n = m = 3
5

6 times = [[2, 1, 2],
7 [1, 2, 2],
8 [1, 2, 1]]
9

10 M = sum(times[i][j] for i in range(n) for j in range(m))
11

12 machines = [[2, 0, 1],
13 [1, 2, 0],
14 [2, 1, 0]]
15

16 model = Model('JSSP')
17

18 c = model.add_var(name="C")
19 x = [[model.add_var(name='x({} ,{} )'.format(j+1, i+1))
20 for i in range(m)] for j in range(n)]
21 y = [[[model.add_var(var_type=BINARY, name='y({} ,{} ,{} )'.format(j+1, k+1, i+1))

(continues on next page)
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(continued from previous page)

22 for i in range(m)] for k in range(n)] for j in range(n)]
23

24 model.objective = c
25

26 for (j, i) in product(range(n), range(1, m)):
27 model += x[j][machines[j][i]] - x[j][machines[j][i-1]] >= \
28 times[j][machines[j][i-1]]
29

30 for (j, k) in product(range(n), range(n)):
31 if k != j:
32 for i in range(m):
33 model += x[j][i] - x[k][i] + M*y[j][k][i] >= times[k][i]
34 model += -x[j][i] + x[k][i] - M*y[j][k][i] >= times[j][i] - M
35

36 for j in range(n):
37 model += c - x[j][machines[j][m - 1]] >= times[j][machines[j][m - 1]]
38

39 model.optimize()
40

41 print("Completion time: ", c.x)
42 for (j, i) in product(range(n), range(m)):
43 print("task %d starts on machine %d at time %g " % (j+1, i+1, x[j][i].x))

4.7 Cutting Stock / One-dimensional Bin Packing Problem

The One-dimensional Cutting Stock Problem (also often referred to as One-dimensional Bin Packing
Problem) is an NP-hard problem first studied by Kantorovich in 1939 [Kan60]. The problem consists of
deciding how to cut a set of pieces out of a set of stock materials (paper rolls, metals, etc.) in a way that
minimizes the number of stock materials used.

[Kan60] proposed an integer programming formulation for the problem, given below:

min:
𝑛∑︁

𝑗=1

𝑦𝑗

s.t.:
𝑛∑︁

𝑗=1

𝑥𝑖,𝑗 ≥ 𝑏𝑖 ∀𝑖 ∈ {1 . . .𝑚}

𝑚∑︁
𝑖=1

𝑤𝑖𝑥𝑖,𝑗 ≤ 𝐿𝑦𝑗 ∀𝑗 ∈ {1 . . . 𝑛}

𝑦𝑗 ∈ {0, 1} ∀𝑗 ∈ {1 . . . 𝑛}
𝑥𝑖,𝑗 ∈ Z+ ∀𝑖 ∈ {1 . . .𝑚},∀𝑗 ∈ {1 . . . 𝑛}

This formulation can be improved by including symmetry reducing constraints, such as:

𝑦𝑗−1 ≥ 𝑦𝑗 ∀𝑗 ∈ {2 . . . 𝑛}

The following Python-MIP code creates the formulation proposed by [Kan60], optimizes it and prints
the optimal solution found.

Listing 7: Formulation for the One-dimensional Cutting Stock
Problem (examples/cuttingstock_kantorovich.py)

1 from mip import Model, xsum, BINARY, INTEGER
2

3 n = 10 # maximum number of bars
4 L = 250 # bar length

(continues on next page)
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5 m = 4 # number of requests
6 w = [187, 119, 74, 90] # size of each item
7 b = [1, 2, 2, 1] # demand for each item
8

9 # creating the model
10 model = Model()
11 x = {(i, j): model.add_var(obj=0, var_type=INTEGER, name="x[%d ,%d ]" % (i, j))
12 for i in range(m) for j in range(n)}
13 y = {j: model.add_var(obj=1, var_type=BINARY, name="y[%d ]" % j)
14 for j in range(n)}
15

16 # constraints
17 for i in range(m):
18 model.add_constr(xsum(x[i, j] for j in range(n)) >= b[i])
19 for j in range(n):
20 model.add_constr(xsum(w[i] * x[i, j] for i in range(m)) <= L * y[j])
21

22 # additional constraints to reduce symmetry
23 for j in range(1, n):
24 model.add_constr(y[j - 1] >= y[j])
25

26 # optimizing the model
27 model.optimize()
28

29 # printing the solution
30 print('')
31 print('Objective value: {model.objective_value:.3} '.format(**locals()))
32 print('Solution: ', end='')
33 for v in model.vars:
34 if v.x > 1e-5:
35 print('{v.name} = {v.x} '.format(**locals()))
36 print(' ', end='')

Note in the code above that argument obj was employed to create the variables (see lines 11 and 13).
By setting obj to a value different than zero, the created variable is automatically added to the objective
function with coefficient equal to obj’s value.

4.8 Two-Dimensional Level Packing

In some industries, raw material must be cut in several pieces of specified size. Here we consider the case
where these pieces are rectangular [LMM02]. Also, due to machine operation constraints, pieces should
be grouped horizontally such that firstly, horizontal layers are cut with the height of the largest item in
the group and secondly, these horizontal layers are then cut according to items widths. Raw material
is provided in rolls with large height. To minimize waste, a given batch of items must be cut using the
minimum possible total height to minimize waste.

Formally, the following input data defines an instance of the Two Dimensional Level Packing Problem
(TDLPP):

𝑊 raw material width

𝑛 number of items

𝐼 set of items = {0, . . . , 𝑛− 1}

𝑤𝑖 width of item 𝑖

ℎ𝑖 height of item 𝑖

The following image illustrate a sample instance of the two dimensional level packing problem.
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This problem can be formulated using binary variables 𝑥𝑖,𝑗 ∈ {0, 1}, that indicate if item 𝑗 should be
grouped with item 𝑖 (𝑥𝑖,𝑗 = 1) or not (𝑥𝑖,𝑗 = 0). Inside the same group, all elements should be linked
to the largest element of the group, the representative of the group. If element 𝑖 is the representative of
the group, then 𝑥𝑖,𝑖 = 1.
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Before presenting the complete formulation, we introduce two sets to simplify the notation. 𝑆𝑖 is the set
of items with width equal or smaller to item 𝑖, i.e., items for which item 𝑖 can be the representative item.
Conversely, 𝐺𝑖 is the set of items with width greater or equal to the width of 𝑖, i.e., items which can be the
representative of item 𝑖 in a solution. More formally, 𝑆𝑖 = {𝑗 ∈ 𝐼 : ℎ𝑗 ≤ ℎ𝑖} and 𝐺𝑖 = {𝑗 ∈ 𝐼 : ℎ𝑗 ≥ ℎ𝑖}.
Note that both sets include the item itself.

min:
∑︁
𝑖∈𝐼

𝑥𝑖,𝑖

s.t.:
∑︁
𝑗∈𝐺𝑖

𝑥𝑖,𝑗 = 1 ∀𝑖 ∈ 𝐼

∑︁
𝑗∈𝑆𝑖:𝑗 ̸=𝑖

𝑥𝑖,𝑗 ≤ (𝑊 − 𝑤𝑖) · 𝑥𝑖,𝑖 ∀𝑖 ∈ 𝐼

𝑥𝑖,𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐼2

The first constraints enforce that each item needs to be packed as the largest item of the set or to be
included in the set of another item with width at least as large. The second set of constraints indicates
that if an item is chosen as representative of a set, then the total width of the items packed within this
same set should not exceed the width of the roll.

The following Python-MIP code creates and optimizes a model to solve the two-dimensional level packing
problem illustrated in the previous figure.

Listing 8: Formulation for two-dimensional level packing packing
(examples/two-dim-pack.py)

1 from mip import Model, BINARY, minimize, xsum
2

3 # 0 1 2 3 4 5 6 7
4 w = [4, 3, 5, 2, 1, 4, 7, 3] # widths
5 h = [2, 4, 1, 5, 6, 3, 5, 4] # heights
6 n = len(w)
7 I = set(range(n))
8 S = [[j for j in I if h[j] <= h[i]] for i in I]
9 G = [[j for j in I if h[j] >= h[i]] for i in I]

10

11 # raw material width
12 W = 10
13

14 m = Model()
15

16 x = [{j: m.add_var(var_type=BINARY) for j in S[i]} for i in I]
17

18 m.objective = minimize(xsum(h[i] * x[i][i] for i in I))
19

20 # each item should appear as larger item of the level
21 # or as an item which belongs to the level of another item
22 for i in I:
23 m += xsum(x[j][i] for j in G[i]) == 1
24

25 # represented items should respect remaining width
26 for i in I:
27 m += xsum(w[j] * x[i][j] for j in S[i] if j != i) <= (W - w[i]) * x[i][i]
28

29 m.optimize()
30

31 for i in [j for j in I if x[j][j].x >= 0.99]:
32 print(
33 "Items grouped with {} : {} ".format(
34 i, [j for j in S[i] if i != j and x[i][j].x >= 0.99]
35 )
36 )
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4.9 Plant Location with Non-Linear Costs

One industry plans to install two plants, one to the west (region 1) and another to the east (region 2).
It must decide also the production capacity of each plant and allocate clients with different demands to
plants in order to minimize shipping costs, which depend on the distance to the selected plant. Clients can
be served by facilities of both regions. The cost of installing a plant with capacity 𝑧 is 𝑓(𝑧) = 1520 log 𝑧.
The Figure below shows the distribution of clients in circles and possible plant locations as triangles.
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This example illustrates the use of Special Ordered Sets (SOS). We’ll use Type 1 SOS to ensure that only
one of the plants in each region has a non-zero production capacity. The cost 𝑓(𝑧) of building a plant
with capacity 𝑧 grows according to the non-linear function 𝑓(𝑧) = 1520 log 𝑧. Type 2 SOS will be used
to model the cost of installing each one of the plants in auxiliary variables 𝑦.

Listing 9: Plant location problem with non-linear costs handled
with Special Ordered Sets

1 import matplotlib.pyplot as plt
2 from math import sqrt, log
3 from itertools import product
4 from mip import Model, xsum, minimize, OptimizationStatus
5

6 # possible plants
7 F = [1, 2, 3, 4, 5, 6]
8

9 # possible plant installation positions
10 pf = {1: (1, 38), 2: (31, 40), 3: (23, 59), 4: (76, 51), 5: (93, 51), 6: (63, 74)}
11

12 # maximum plant capacity
13 c = {1: 1955, 2: 1932, 3: 1987, 4: 1823, 5: 1718, 6: 1742}
14

15 # clients
16 C = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
17

18 # position of clients
19 pc = {1: (94, 10), 2: (57, 26), 3: (74, 44), 4: (27, 51), 5: (78, 30), 6: (23, 30),
20 7: (20, 72), 8: (3, 27), 9: (5, 39), 10: (51, 1)}

(continues on next page)
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21

22 # demands
23 d = {1: 302, 2: 273, 3: 275, 4: 266, 5: 287, 6: 296, 7: 297, 8: 310, 9: 302, 10: 309}
24

25 # plotting possible plant locations
26 for i, p in pf.items():
27 plt.scatter((p[0]), (p[1]), marker="^", color="purple", s=50)
28 plt.text((p[0]), (p[1]), "$f_%d $" % i)
29

30 # plotting location of clients
31 for i, p in pc.items():
32 plt.scatter((p[0]), (p[1]), marker="o", color="black", s=15)
33 plt.text((p[0]), (p[1]), "$c_{%d }$" % i)
34

35 plt.text((20), (78), "Region 1")
36 plt.text((70), (78), "Region 2")
37 plt.plot((50, 50), (0, 80))
38

39 dist = {(f, c): round(sqrt((pf[f][0] - pc[c][0]) ** 2 + (pf[f][1] - pc[c][1]) ** 2), 1)
40 for (f, c) in product(F, C) }
41

42 m = Model()
43

44 z = {i: m.add_var(ub=c[i]) for i in F} # plant capacity
45

46 # Type 1 SOS: only one plant per region
47 for r in [0, 1]:
48 # set of plants in region r
49 Fr = [i for i in F if r * 50 <= pf[i][0] <= 50 + r * 50]
50 m.add_sos([(z[i], i - 1) for i in Fr], 1)
51

52 # amount that plant i will supply to client j
53 x = {(i, j): m.add_var() for (i, j) in product(F, C)}
54

55 # satisfy demand
56 for j in C:
57 m += xsum(x[(i, j)] for i in F) == d[j]
58

59 # SOS type 2 to model installation costs for each installed plant
60 y = {i: m.add_var() for i in F}
61 for f in F:
62 D = 6 # nr. of discretization points, increase for more precision
63 v = [c[f] * (v / (D - 1)) for v in range(D)] # points
64 # non-linear function values for points in v
65 vn = [0 if k == 0 else 1520 * log(v[k]) for k in range(D)]
66 # w variables
67 w = [m.add_var() for v in range(D)]
68 m += xsum(w) == 1 # convexification
69 # link to z vars
70 m += z[f] == xsum(v[k] * w[k] for k in range(D))
71 # link to y vars associated with non-linear cost
72 m += y[f] == xsum(vn[k] * w[k] for k in range(D))
73 m.add_sos([(w[k], v[k]) for k in range(D)], 2)
74

75 # plant capacity
76 for i in F:
77 m += z[i] >= xsum(x[(i, j)] for j in C)
78

79 # objective function
80 m.objective = minimize(
81 xsum(dist[i, j] * x[i, j] for (i, j) in product(F, C)) + xsum(y[i] for i in F) )

(continues on next page)
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82

83 m.optimize()
84

85 plt.savefig("location.pdf")
86

87 if m.num_solutions:
88 print("Solution with cost {} found.".format(m.objective_value))
89 print("Facilities capacities: {} ".format([z[f].x for f in F]))
90 print("Facilities cost: {} ".format([y[f].x for f in F]))
91

92 # plotting allocations
93 for (i, j) in [(i, j) for (i, j) in product(F, C) if x[(i, j)].x >= 1e-6]:
94 plt.plot(
95 (pf[i][0], pc[j][0]), (pf[i][1], pc[j][1]), linestyle="--", color="darkgray"
96 )
97

98 plt.savefig("location-sol.pdf")

The allocation of clients and plants in the optimal solution is shown bellow. This example uses Matplotlib
to draw the Figures.
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Chapter 5

Special Ordered Sets

Special Ordered Sets (SOSs) are ordered sets of variables, where only one/two contiguous variables in
this set can assume non-zero values. Introduced in [BeTo70], they provide powerful means of modeling
nonconvex functions [BeFo76] and can improve the performance of the branch-and-bound algorithm.

Type 1 SOS (S1): In this case, only one variable of the set can assume a non zero value. This variable
may indicate, for example the site where a plant should be build. As the value of this non-zero
variable would not have to be necessarily its upper bound, its value may also indicate the size of
the plant.

Type 2 SOS (S2): In this case, up to two consecutive variables in the set may assume non-zero values.
S2 are specially useful to model piecewise linear approximations of non-linear functions.

Given nonlinear function 𝑓(𝑥), a linear approximation can be computed for a set of 𝑘 points 𝑥1, 𝑥2, . . . , 𝑥𝑘,
using continuous variables 𝑤1, 𝑤2, . . . , 𝑤𝑘, with the following constraints:

𝑘∑︁
𝑖=1

𝑤𝑖 = 1

𝑘∑︁
𝑖=1

𝑥𝑖. 𝑤𝑖 = 𝑥

Thus, the result of 𝑓(𝑥) can be approximate in 𝑧:

𝑧 =

𝑘∑︁
𝑖=1

𝑓(𝑥𝑖). 𝑤𝑖

Provided that at most two of the 𝑤𝑖 variables are allowed to be non-zero and they are adjacent, which
can be ensured by adding the pairs (variables, weight) {(𝑤𝑖, 𝑥𝑖)∀𝑖 ∈ {1, . . . , 𝑘}} to the model as a S2
set, using function add_sos() . The approximation is exact at the selected points and is adequately
approximated by linear interpolation between them.

As an example, consider that the production cost of some product that due to some economy of scale
phenomenon, is 𝑓(𝑥) = 1520 * log 𝑥. The graph bellow depicts the growing of 𝑓(𝑥) for 𝑥 ∈ [0, 150].
Triangles indicate selected discretization points for 𝑥. Observe that, in this case, the approximation
(straight lines connecting the triangles) remains pretty close to the real curve using only 5 discretiza-
tion points. Additional discretization points can be included, not necessarily evenly distributed, for an
improved precision.
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In this example, the approximation of 𝑧 = 1520 log 𝑥 for points 𝑥 = (0, 10, 30, 70, 150), which correspond
to 𝑧 = (0, 3499.929, 5169.82, 6457.713, 7616.166) could be computed with the following constraints over
𝑥, 𝑧 and 𝑤1, . . . , 𝑤5 :

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 = 1

𝑥 = 0𝑤1 + 10𝑤2 + 30𝑤3 + 70𝑤4 + 150𝑤5

𝑧 = 0𝑤1 + 3499.929𝑤2 + 5169.82𝑤3 + 6457.713𝑤4 + 7616.166𝑤5

provided that {(𝑤1, 0), (𝑤2, 10), (𝑤3, 30), (𝑤4, 70), (𝑤5, 150)} is included as S2.

For a complete example showing the use of Type 1 and Type 2 SOS see this example.
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Chapter 6

Developing Customized Branch-&-Cut
algorithms

This chapter discusses some features of Python-MIP that allow the development of improved Branch-
&-Cut algorithms by linking application specific routines to the generic algorithm included in the solver
engine. We start providing an introduction to cutting planes and cut separation routines in the next
section, following with a section describing how these routines can be embedded in the Branch-&-Cut
solver engine using the generic cut callbacks of Python-MIP.

6.1 Cutting Planes

In many applications there are strong formulations that may include an exponential number of con-
straints. These formulations cannot be direct handled by the MIP Solver: entering all these constraints
at once is usually not practical, except for very small instances. In the Cutting Planes [Dantz54] method
the LP relaxation is solved and only constraints which are violated are inserted. The model is re-optimized
and at each iteration a stronger formulation is obtained until no more violated inequalities are found.
The problem of discovering which are the missing violated constraints is also an optimization problem
(finding the most violated inequality) and it is called the Separation Problem.

As an example, consider the Traveling Salesman Problem. The compact formulation (Section 4.2) is a
weak formulation: dual bounds produced at the root node of the search tree are distant from the optimal
solution cost and improving these bounds requires a potentially intractable number of branchings. In
this case, the culprit are the sub-tour elimination constraints linking variables 𝑥 and 𝑦. A much stronger
TSP formulation can be written as follows: consider a graph 𝐺 = (𝑁,𝐴) where 𝑁 is the set of nodes
and 𝐴 is the set of directed edges with associated traveling costs 𝑐𝑎 ∈ 𝐴. Selection of arcs is done with
binary variables 𝑥𝑎 ∀𝑎 ∈ 𝐴. Consider also that edges arriving and leaving a node 𝑛 are indicated in 𝐴+

𝑛

and 𝐴−
𝑛 , respectively. The complete formulation follows:

Minimize: ∑︁
𝑎∈𝐴

𝑐𝑎. 𝑥𝑎

Subject to: ∑︁
𝑎∈𝐴+

𝑛

𝑥𝑎 = 1 ∀𝑛 ∈ 𝑁

∑︁
𝑎∈𝐴−

𝑛

𝑥𝑎 = 1 ∀𝑛 ∈ 𝑁

∑︁
(𝑖,𝑗)∈𝐴:𝑖∈𝑆∧𝑗∈𝑆

𝑥(𝑖,𝑗) ≤ |𝑆| − 1 ∀ 𝑆 ⊂ 𝐼

𝑥𝑎 ∈ {0, 1} ∀𝑎 ∈ 𝐴
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The third constraints are sub-tour elimination constraints. Since these constraints are stated for every
subset of nodes, the number of these constraints is 𝑂(2|𝑁 |). These are the constraints that will be
separated by our cutting pane algorithm. As an example, consider the following graph:

a

b

c

d

e

f

g

56

67

49

50

39

37

35

35

35

25

80
99

2020

38
49

3732

2130

47

68

3752

15

20

The optimal LP relaxation of the previous formulation without the sub-tour elimination constraints has
cost 237:
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As it can be seen, there are tree disconnected sub-tours. Two of these include only two nodes. Forbidding
sub-tours of size 2 is quite easy: in this case we only need to include the additional constraints: 𝑥(𝑑,𝑒) +
𝑥(𝑒,𝑑) ≤ 1 and 𝑥(𝑐,𝑓) + 𝑥(𝑓,𝑐) ≤ 1.

Optimizing with these two additional constraints the objective value increases to 244 and the following
new solution is generated:
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Now there are sub-tours of size 3 and 4. Let’s consider the sub-tour defined by nodes 𝑆 = {𝑎, 𝑏, 𝑔}. The
valid inequality for 𝑆 is: 𝑥(𝑎,𝑔) +𝑥(𝑔,𝑎) +𝑥(𝑎,𝑏) +𝑥(𝑏,𝑎) +𝑥(𝑏,𝑔) +𝑥(𝑔,𝑏) ≤ 2. Adding this cut to our model
increases the objective value to 261, a significant improvement. In our example, the visual identification
of the isolated subset is easy, but how to automatically identify these subsets efficiently in the general
case ? Isolated subsets can be identified when a cut is found in the graph defined by arcs active in
the unfeasible solution. To identify the most isolated subsets we just have to solve the Minimum cut
problem in graphs. In python you can use the networkx min-cut module. The following code implements
a cutting plane algorithm for the asymmetric traveling salesman problem:

Listing 1: A pure cutting-planes approach for the Traveling Sales-
man Problem (examples/cutting_planes.py)

1

2 from itertools import product
3 from networkx import minimum_cut, DiGraph
4 from mip import Model, xsum, BINARY, OptimizationStatus, CutType
5

6 N = ["a", "b", "c", "d", "e", "f", "g"]
7 A = { ("a", "d"): 56, ("d", "a"): 67, ("a", "b"): 49, ("b", "a"): 50,
8 ("f", "c"): 35, ("g", "b"): 35, ("g", "b"): 35, ("b", "g"): 25,
9 ("a", "c"): 80, ("c", "a"): 99, ("e", "f"): 20, ("f", "e"): 20,

10 ("g", "e"): 38, ("e", "g"): 49, ("g", "f"): 37, ("f", "g"): 32,
11 ("b", "e"): 21, ("e", "b"): 30, ("a", "g"): 47, ("g", "a"): 68,
12 ("d", "c"): 37, ("c", "d"): 52, ("d", "e"): 15, ("e", "d"): 20,
13 ("d", "b"): 39, ("b", "d"): 37, ("c", "f"): 35, }
14 Aout = {n: [a for a in A if a[0] == n] for n in N}
15 Ain = {n: [a for a in A if a[1] == n] for n in N}
16

17 m = Model()
18 x = {a: m.add_var(name="x({} ,{} )".format(a[0], a[1]), var_type=BINARY) for a in A}
19

20 m.objective = xsum(c * x[a] for a, c in A.items())
21

22 for n in N:
23 m += xsum(x[a] for a in Aout[n]) == 1, "out({} )".format(n)
24 m += xsum(x[a] for a in Ain[n]) == 1, "in({} )".format(n)
25

26 newConstraints = True
27

28 while newConstraints:
(continues on next page)
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(continued from previous page)

29 m.optimize(relax=True)
30 print("status: {} objective value : {} ".format(m.status, m.objective_value))
31

32 G = DiGraph()
33 for a in A:
34 G.add_edge(a[0], a[1], capacity=x[a].x)
35

36 newConstraints = False
37 for (n1, n2) in [(i, j) for (i, j) in product(N, N) if i != j]:
38 cut_value, (S, NS) = minimum_cut(G, n1, n2)
39 if cut_value <= 0.99:
40 m += (xsum(x[a] for a in A if (a[0] in S and a[1] in S)) <= len(S) - 1)
41 newConstraints = True
42 if not newConstraints and m.solver_name.lower() == "cbc":
43 cp = m.generate_cuts([CutType.GOMORY, CutType.MIR,
44 CutType.ZERO_HALF, CutType.KNAPSACK_COVER])
45 if cp.cuts:
46 m += cp
47 newConstraints = True

Lines 6-13 are the input data. Nodes are labeled with letters in a list N and a dictionary A is used to store
the weighted directed graph. Lines 14 and 15 store output and input arcs per node. The mapping of
binary variables 𝑥𝑎 to arcs is made also using a dictionary in line 18. Line 20 sets the objective function
and the following tree lines include constraints enforcing one entering and one leaving arc to be selected
for each node. Line 29 will only solve the LP relaxation and the separation routine can be executed.
Our separation routine is executed for each pair or nodes at line 38 and whenever a disconnected subset
is found the violated inequality is generated and included at line 40. The process repeats while new
violated inequalities are generated.

Python-MIP also supports the automatic generation of cutting planes, i.e., cutting planes that can be
generated for any model just considering integrality constraints. Line 43 triggers the generation of these
cutting planes with the method generate_cuts() when our sub-tour elimination procedure does not
finds violated sub-tour elimination inequalities anymore.

6.2 Cut Callback

The cutting plane method has some limitations: even though the first rounds of cuts improve significantly
the lower bound, the overall number of iterations needed to obtain the optimal integer solution may be too
large. Better results can be obtained with the Branch-&-Cut algorithm, where cut generation is combined
with branching. If you have an algorithm like the one included in the previous Section to separate
inequalities for your application you can combine it with the complete BC algorithm implemented in the
solver engine using callbacks. Cut generation callbacks (CGC) are called at each node of the search tree
where a fractional solution is found. Cuts are generated in the callback and returned to the MIP solver
engine which adds these cuts to the Cut Pool. These cuts are merged with the cuts generated with the
solver builtin cut generators and a subset of these cuts is included to the LP relaxation model. Please
note that in the Branch-&-Cut algorithm context cuts are optional components and only those that are
classified as good cuts by the solver engine will be accepted, i.e., cuts that are too dense and/or have a
small violation could be discarded, since the cost of solving a much larger linear program may not be
worth the resulting bound improvement.

When using cut callbacks be sure that cuts are used only to improve the LP relaxation but not to define
feasible solutions, which need to be defined by the initial formulation. In other words, the initial model
without cuts may be weak but needs to be complete1. In the case of TSP, we can include the weak
sub-tour elimination constraints presented in Section 4.2 in the initial model and then add the stronger
sub-tour elimination constraints presented in the previous section as cuts.

1 If you want to initally enter an incomplete formulation than see the next sub-section on Lazy-Constraints.
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In Python-MIP, CGC are implemented extending the ConstrsGenerator class. The following example
implements the previous cut separation algorithm as a ConstrsGenerator class and includes it as a
cut generator for the branch-and-cut solver engine. The method that needs to be implemented in this
class is the generate_constrs() procedure. This method receives as parameter the object model of
type Model . This object must be used to query the fractional values of the model vars , using the x
property. Other model properties can be queried, such as the problem constraints (constrs ). Please
note that, depending on which solver engine you use, some variables/constraints from the original model
may have been removed in the pre-processing phase. Thus, direct references to the original problem
variables may be invalid. The method translate() (line 15) translates references of variables from the
original model to references of variables in the model received in the callback procedure. Whenever a
violated inequality is discovered, it can be added to the model using the += operator (line 31). In our
example, we temporarily store the generated cuts in a CutPool object (line 25) to discard repeated cuts
that eventually are found.

Listing 2: Branch-and-cut for the traveling salesman problem
(examples/tsp-cuts.py)

1 from typing import List, Tuple
2 from random import seed, randint
3 from itertools import product
4 from math import sqrt
5 import networkx as nx
6 from mip import Model, xsum, BINARY, minimize, ConstrsGenerator, CutPool
7

8

9 class SubTourCutGenerator(ConstrsGenerator):
10 """Class to generate cutting planes for the TSP"""
11 def __init__(self, Fl: List[Tuple[int, int]], x_, V_):
12 self.F, self.x, self.V = Fl, x_, V_
13

14 def generate_constrs(self, model: Model, depth: int = 0, npass: int = 0):
15 xf, V_, cp, G = model.translate(self.x), self.V, CutPool(), nx.DiGraph()
16 for (u, v) in [(k, l) for (k, l) in product(V_, V_) if k != l and xf[k][l]]:
17 G.add_edge(u, v, capacity=xf[u][v].x)
18 for (u, v) in F:
19 val, (S, NS) = nx.minimum_cut(G, u, v)
20 if val <= 0.99:
21 aInS = [(xf[i][j], xf[i][j].x)
22 for (i, j) in product(V_, V_) if i != j and xf[i][j] and i in S and j␣

→˓in S]
23 if sum(f for v, f in aInS) >= (len(S)-1)+1e-4:
24 cut = xsum(1.0*v for v, fm in aInS) <= len(S)-1
25 cp.add(cut)
26 if len(cp.cuts) > 256:
27 for cut in cp.cuts:
28 model += cut
29 return
30 for cut in cp.cuts:
31 model += cut
32

33

34 n = 30 # number of points
35 V = set(range(n))
36 seed(0)
37 p = [(randint(1, 100), randint(1, 100)) for i in V] # coordinates
38 Arcs = [(i, j) for (i, j) in product(V, V) if i != j]
39

40 # distance matrix
41 c = [[round(sqrt((p[i][0]-p[j][0])**2 + (p[i][1]-p[j][1])**2)) for j in V] for i in V]
42

43 model = Model()
(continues on next page)
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44

45 # binary variables indicating if arc (i,j) is used on the route or not
46 x = [[model.add_var(var_type=BINARY) for j in V] for i in V]
47

48 # continuous variable to prevent subtours: each city will have a
49 # different sequential id in the planned route except the first one
50 y = [model.add_var() for i in V]
51

52 # objective function: minimize the distance
53 model.objective = minimize(xsum(c[i][j]*x[i][j] for (i, j) in Arcs))
54

55 # constraint : leave each city only once
56 for i in V:
57 model += xsum(x[i][j] for j in V - {i}) == 1
58

59 # constraint : enter each city only once
60 for i in V:
61 model += xsum(x[j][i] for j in V - {i}) == 1
62

63 # (weak) subtour elimination
64 # subtour elimination
65 for (i, j) in product(V - {0}, V - {0}):
66 if i != j:
67 model += y[i] - (n+1)*x[i][j] >= y[j]-n
68

69 # no subtours of size 2
70 for (i, j) in Arcs:
71 model += x[i][j] + x[j][i] <= 1
72

73 # computing farthest point for each point, these will be checked first for
74 # isolated subtours
75 F, G = [], nx.DiGraph()
76 for (i, j) in Arcs:
77 G.add_edge(i, j, weight=c[i][j])
78 for i in V:
79 P, D = nx.dijkstra_predecessor_and_distance(G, source=i)
80 DS = list(D.items())
81 DS.sort(key=lambda x: x[1])
82 F.append((i, DS[-1][0]))
83

84 model.cuts_generator = SubTourCutGenerator(F, x, V)
85 model.optimize()
86

87 print('status: %s route length %g ' % (model.status, model.objective_value))
88

6.3 Lazy Constraints

Python-MIP also supports the use of constraint generators to produce lazy constraints. Lazy constraints
are dynamically generated, just as cutting planes, with the difference that lazy constraints are also applied
to integer solutions. They should be used when the initial formulation is incomplete. In the case of our
previous TSP example, this approach allow us to use in the initial formulation only the degree constraints
and add all required sub-tour elimination constraints on demand. Auxiliary variables 𝑦 would also not
be necessary. The lazy constraints TSP example is exactly as the cut generator callback example with
the difference that, besides starting with a smaller formulation, we have to inform that the constraint
generator will be used to generate lazy constraints using the model property lazy_constrs_generator .
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...
model.cuts_generator = SubTourCutGenerator(F, x, V)
model.lazy_constrs_generator = SubTourCutGenerator(F, x, V)
model.optimize()
...

6.4 Providing initial feasible solutions

The Branch-&-Cut algorithm usually executes faster with the availability of an integer feasible solution:
an upper bound for the solution cost improves its ability of pruning branches in the search tree and
this solution is also used in local search MIP heuristics. MIP solvers employ several heuristics for the
automatically production of these solutions but they do not always succeed.

If you have some problem specific heuristic which can produce an initial feasible solution for your ap-
plication then you can inform this solution to the MIP solver using the start model property. Let’s
consider our TSP application (Section 4.2). If the graph is complete, i.e. distances are available for
each pair of cities, then any permutation Π = (𝜋1, . . . , 𝜋𝑛) of the cities 𝑁 can be used as an initial
feasible solution. This solution has exactly |𝑁 | 𝑥 variables equal to one indicating the selected arcs:
((𝜋1, 𝜋2), (𝜋2, 𝜋3), . . . , (𝜋𝑛−1, 𝜋𝑛), (𝜋𝑛, 𝜋1)). Even though this solution is obvious for the modeler, which
knows that binary variables of this model refer to arcs in a TSP graph, this solution is not obvious for the
MIP solver, which only sees variables and a constraint matrix. The following example enters an initial
random permutation of cities as initial feasible solution for our TSP example, considering an instance with
n cities, and a model model with references to variables stored in a matrix x[0,...,n-1][0,..,n-1]:

1 from random import shuffle
2 S=[i for i in range(n)]
3 shuffle(S)
4 model.start = [(x[S[k-1]][S[k]], 1.0) for k in range(n)]

The previous example can be integrated in our TSP example (Section 4.2) by inserting these lines before
the model.optimize() call. Initial feasible solutions are informed in a list (line 4) of (var, value) pairs.
Please note that only the original non-zero problem variables need to be informed, i.e., the solver will
automatically compute the values of the auxiliary 𝑦 variables which are used only to eliminate sub-tours.
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Chapter 7

Benchmarks

This section presents computational experiments on the creation of Integer Programming models using
different mathematical modelling packages. Gurobi is the default Gurobi ® Python interface, which
currently only supports the Python interpreter CPython. Pulp supports both CPython and also the
just-in-time compiler Pypy. MIP also suports both. JuMP [DHL17I] is the Mathematical Programming
package of the Julia programming language. Both Jump and Pulp use intermediate data structures to
store the mathematical programming model before flushing it to the solver, so that the selected solver
does not impacts on the model creation times. MIP does not stores the model itself, directly calling
problem creation/modification routines on the solver engine.

Since MIP communicates every problem modification directly to the solver engine, the engine must
handle efficiently many small modification request to avoid potentially expensive resize/move operations
in the constraint matrix. Gurobi automatically buffers problem modification requests and has an update
method to flush these request. CBC did not had an equivalent mechanism, so we implemented an
automatic buffering/flushing mechanism in the CBC C Interface. Our computational results already
consider this updated CBC version.

Computational experiments executed on a ThinkPad ® X1 notebook with an Intel ® Core™ i7-7600U
processor and 8 Gb of RAM using the Linux operating system. The following software releases were
used: CPython 3.7.3, Pypy 7.1.1, Julia 1.1.1, JuMP 0.19 and Gurobi 8.1 and CBC svn 2563.

7.1 n-Queens

These are binary programming models. The largest model has 1 million variables and roughly 6000
constraints and 4 million of non-zero entries in the constraint matrix.

𝑛 Gurobi
CPython

Pulp Python-MIP JuMP
Gurobi CBC

CPython Pypy CPython Pypy CPython Pypy
100 0.24 0.27 0.18 0.65 0.97 0.30 0.45 2.38
200 1.43 1.73 0.43 1.60 0.18 1.47 0.19 0.25
300 4.97 5.80 0.92 5.48 0.37 5.12 0.38 0.47
400 12.37 14.29 1.55 13.58 0.72 13.24 0.74 1.11
500 24.70 32.62 2.62 27.25 1.25 26.30 1.23 2.09
600 43.88 49.92 4.10 47.75 2.02 46.23 1.99 2.86
700 69.77 79.57 5.84 75.97 3.04 74.47 2.94 3.64
800 105.04 119.07 8.19 114.86 4.33 112.10 4.26 5.58
900 150.89 169.92 10.84 163.36 5.95 160.67 5.83 8.08
1000 206.63 232.32 14.26 220.56 8.02 222.09 7.76 10.02
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Chapter 8

External Documentation/Examples

This section includes links for external documentation and examples. Some documents provide informa-
tion on how to integrate Python-MIP with other Python tools.

• Network-constrained Transportation Problem.: provides a notebook for solving a transportation
problem and integrating with Pysal, by James D. Gaboardi.

• How to choose stocks to invest in with Python, by Khuyen Tran, includes an example of building
an optimal multi-year investment plan in Python-MIP.

• Solving a Quadratic Problem, by pabloazurduy.
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Chapter 9

Classes

Classes used in solver callbacks, for a bi-directional communication with the solver engine

9.1 Model

class Model(name='', sense='MIN', solver_name='', solver=None)
Mixed Integer Programming Model

This is the main class, providing methods for building, optimizing, querying optimization results
and re-optimizing Mixed-Integer Programming Models.

To check how models are created please see the examples included.

vars
list of problem variables (Var )

Type mip.VarList

constrs
list of constraints (Constr )

Type mip.ConstrList

Examples

>>> from mip import Model, MAXIMIZE, CBC, INTEGER, OptimizationStatus
>>> model = Model(sense=MAXIMIZE, solver_name=CBC)
>>> x = model.add_var(name='x', var_type=INTEGER, lb=0, ub=10)
>>> y = model.add_var(name='y', var_type=INTEGER, lb=0, ub=10)
>>> model += x + y <= 10
>>> model.objective = x + y
>>> status = model.optimize(max_seconds=2)
>>> status == OptimizationStatus.OPTIMAL
True

add_constr(lin_expr, name='', priority=None)
Creates a new constraint (row).

Adds a new constraint to the model, returning its reference.

Parameters

• lin_expr (mip.LinExpr) – linear expression

• name (str ) – optional constraint name, used when saving model to lp or mps
files

43

https://docs.python.org/3/library/stdtypes.html#str


Mixed Integer Linear Programming with Python

• priority (mip.constants.ConstraintPriority ) – optional constraint prior-
ity

Examples:

The following code adds the constraint 𝑥1 + 𝑥2 ≤ 1 (x1 and x2 should be created first using
add_var() ):

m += x1 + x2 <= 1

Which is equivalent to:

m.add_constr( x1 + x2 <= 1 )

Summation expressions can be used also, to add the constraint
𝑛−1∑︁
𝑖=0

𝑥𝑖 = 𝑦 and name this

constraint cons1:

m += xsum(x[i] for i in range(n)) == y, "cons1"

Which is equivalent to:

m.add_constr( xsum(x[i] for i in range(n)) == y, "cons1" )

Return type mip.Constr

add_cut(cut)
Adds a violated inequality (cutting plane) to the linear programming model. If called outside
the cut callback performs exactly as add_constr() . When called inside the cut callback the
cut is included in the solver’s cut pool, which will later decide if this cut should be added or
not to the model. Repeated cuts, or cuts which will probably be less effective, e.g. with a
very small violation, can be discarded.

Parameters cut (mip.LinExpr) – violated inequality

add_lazy_constr(expr)
Adds a lazy constraint

A lazy constraint is a constraint that is only inserted into the model after the first integer
solution that violates it is found. When lazy constraints are used a restricted pre-processing
is executed since the complete model is not available at the beginning. If the number of lazy
constraints is too large then they can be added during the search process by implementing a
ConstrsGenerator and setting the property lazy_constrs_generator of Model .

Parameters expr (mip.LinExpr) – the linear constraint

add_sos(sos, sos_type)
Adds an Special Ordered Set (SOS) to the model

An explanation on Special Ordered Sets is provided here.

Parameters

• sos (List [ Tuple [ Var, numbers.Real ] ] ) – list including variables (not
necessarily binary) and respective weights in the model

• sos_type (int ) – 1 for Type 1 SOS, where at most one of the binary variables
can be set to one and 2 for Type 2 SOS, where at most two variables from
the list may be selected. In type 2 SOS the two selected variables will be
consecutive in the list.

add_var(name='', lb=0.0, ub=inf, obj=0.0, var_type='C', column=None)
Creates a new variable in the model, returning its reference

Parameters
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• name (str ) – variable name (optional)

• lb (numbers.Real ) – variable lower bound, default 0.0

• ub (numbers.Real ) – variable upper bound, default infinity

• obj (numbers.Real ) – coefficient of this variable in the objective function,
default 0

• var_type (str ) – CONTINUOUS (“C”), BINARY (“B”) or INTEGER (“I”)

• column (mip.Column) – constraints where this variable will appear, necessary
only when constraints are already created in the model and a new variable will
be created.

Examples

To add a variable x which is continuous and greater or equal to zero to model m:

x = m.add_var()

The following code adds a vector of binary variables x[0], ..., x[n-1] to the model m:

x = [m.add_var(var_type=BINARY) for i in range(n)]

Return type mip.Var

add_var_tensor(shape, name, **kwargs)
Creates new variables in the model, arranging them in a numpy tensor and returning its
reference

Parameters

• shape (Tuple [ int , .. ] ) – shape of the numpy tensor

• name (str ) – variable name

• **kwargs – all other named arguments will be used as add_var() arguments

Examples

To add a tensor of variables x with shape (3, 5) and which is continuous in any variable and
have all values greater or equal to zero to model m:

x = m.add_var_tensor((3, 5), "x")

Return type mip.LinExprTensor

check_optimization_results()
Checks the consistency of the optimization results, i.e., if the solution(s) produced by the
MIP solver respect all constraints and variable values are within acceptable bounds and are
integral when requested.

clear()
Clears the model

All variables, constraints and parameters will be reset. In addition, a new solver instance will
be instantiated to implement the formulation.

property clique
Controls the generation of clique cuts. -1 means automatic, 0 disables it, 1 enables it and 2
enables more aggressive clique generation.
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Return type int

clique_merge(constrs=None)
This procedure searches for constraints with conflicting variables and attempts to group these
constraints in larger constraints with all conflicts merged.

For example, if your model has the following constraints:

𝑥1 + 𝑥2 ≤ 1

𝑥2 + 𝑥3 ≤ 1

𝑥1 + 𝑥3 ≤ 1

Then they can all be removed and replaced by the stronger inequality:

𝑥1 + 𝑥2 + 𝑥3 ≤ 1

Parameters constrs (Optional [ List [ mip.Constr] ] ) – constraints that should
be checked for merging. All constraints will be checked if constrs is None.

property conflict_graph
Returns the ConflictGraph of a MIP model.

Return type mip.ConflictGraph

constr_by_name(name)
Queries a constraint by its name

Parameters name (str ) – constraint name

Return type Optional[mip.Constr ]

Returns constraint or None if not found

copy(solver_name='')
Creates a copy of the current model

Parameters solver_name (str ) – solver name (optional)

Return type Model

Returns clone of current model

property cut_passes
Maximum number of rounds of cutting planes. You may set this parameter to low values if you
see that a significant amount of time is being spent generating cuts without any improvement
in the lower bound. -1 means automatic, values greater than zero specify the maximum
number of rounds.

Return type int

property cutoff
upper limit for the solution cost, solutions with cost > cutoff will be removed from the search
space, a small cutoff value may significantly speedup the search, but if cutoff is set to a value
too low the model will become infeasible

Return type Real

property cuts
Controls the generation of cutting planes, -1 means automatic, 0 disables completely, 1 (de-
fault) generates cutting planes in a moderate way, 2 generates cutting planes aggressively
and 3 generates even more cutting planes. Cutting planes usually improve the LP relaxation
bound but also make the solution time of the LP relaxation larger, so the overall effect is hard
to predict and experimenting different values for this parameter may be beneficial.

Return type int
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property cuts_generator
A cuts generator is an ConstrsGenerator object that receives a fractional solution and tries
to generate one or more constraints (cuts) to remove it. The cuts generator is called in every
node of the branch-and-cut tree where a solution that violates the integrality constraint of
one or more variables is found.

Return type Optional[mip.ConstrsGenerator ]

property emphasis
defines the main objective of the search, if set to 1 (FEASIBILITY) then the search process will
focus on try to find quickly feasible solutions and improving them; if set to 2 (OPTIMALITY)
then the search process will try to find a provable optimal solution, procedures to further
improve the lower bounds will be activated in this setting, this may increase the time to
produce the first feasible solutions but will probably pay off in longer runs; the default option
if 0, where a balance between optimality and feasibility is sought.

Return type mip.SearchEmphasis

property gap
The optimality gap considering the cost of the best solution found (objective_value ) 𝑏 and
the best objective bound 𝑙 (objective_bound ) 𝑔 is computed as: 𝑔 =
𝑓𝑟𝑎𝑐|𝑏− 𝑙||𝑏|. If no solution was found or if 𝑏 = 0 then 𝑔 = ∞. If the optimal solution was
found then 𝑔 = 0.

Return type float

generate_cuts(cut_types=None, depth=0, npass=0, max_cuts=8192, min_viol=0.0001)
Tries to generate cutting planes for the current fractional solution. To optimize only the linear
programming relaxation and not discard integrality information from variables you must call
first model.optimize(relax=True).

This method only works with the CBC mip solver, as Gurobi does not supports calling only
cut generators.

Parameters

• cut_types (List [ CutType] ) – types of cuts that can be generated, if an
empty list is specified then all available cut generators will be called.

• depth (int) – depth of the search tree, when informed the cut generator may
decide to generate more/less cuts depending on the depth.

• max_cuts (int ) – cut separation will stop when at least max_cuts violated
cuts were found.

• min_viol (float ) – cuts which are not violated by at least min_viol will be
discarded.

Return type mip.CutPool

property infeas_tol
Maximum allowed violation for constraints.

Default value: 1e-6. Tightening this value can increase the numerical precision but also
probably increase the running time. As floating point computations always involve some loss
of precision, values too close to zero will likely render some models impossible to optimize.

Return type float

property integer_tol
Maximum distance to the nearest integer for a variable to be considered with an integer
value. Default value: 1e-6. Tightening this value can increase the numerical precision but
also probably increase the running time. As floating point computations always involve some
loss of precision, values too close to zero will likely render some models impossible to optimize.

Return type float
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property lazy_constrs_generator
A lazy constraints generator is an ConstrsGenerator object that receives an integer solution
and checks its feasibility. If the solution is not feasible then one or more constraints can be
generated to remove it. When a lazy constraints generator is informed it is assumed that the
initial formulation is incomplete. Thus, a restricted pre-processing routine may be applied. If
the initial formulation is incomplete, it may be interesting to use the same ConstrsGenerator
to generate cuts and lazy constraints. The use of only lazy constraints may be useful then
integer solutions rarely violate these constraints.

Return type Optional[mip.ConstrsGenerator ]

property lp_method
Which method should be used to solve the linear programming problem. If the problem has
integer variables that this affects only the solution of the first linear programming relaxation.

Return type mip.LP_Method

property max_mip_gap
value indicating the tolerance for the maximum percentage deviation from the optimal solution
cost, if a solution with cost 𝑐 and a lower bound 𝑙 are available and (𝑐− 𝑙)/𝑙 < max_mip_gap
the search will be concluded. Default value: 1e-4.

Return type float

property max_mip_gap_abs
Tolerance for the quality of the optimal solution, if a solution with cost 𝑐 and a lower bound
𝑙 are available and 𝑐 − 𝑙 < mip_gap_abs, the search will be concluded, see max_mip_gap to
determine a percentage value. Default value: 1e-10.

Return type float

property max_nodes
maximum number of nodes to be explored in the search tree

Return type int

property max_seconds
time limit in seconds for search

Return type float

property max_solutions
solution limit, search will be stopped when max_solutions were found

Return type int

property name
The problem (instance) name.

This name should be used to identify the instance that this model refers, e.g.: production-
PlanningMay19. This name is stored when saving (write() ) the model in .LP or .MPS file
formats.

Return type str

property num_cols
number of columns (variables) in the model

Return type int

property num_int
number of integer variables in the model

Return type int

property num_nz
number of non-zeros in the constraint matrix

Return type int
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property num_rows
number of rows (constraints) in the model

Return type int

property num_solutions
Number of solutions found during the MIP search

Return type int

Returns number of solutions stored in the solution pool

property objective
The objective function of the problem as a linear expression.

Examples

The following code adds all x variables x[0], ..., x[n-1], to the objective function of model
m with the same cost w:

m.objective = xsum(w*x[i] for i in range(n))

A simpler way to define the objective function is the use of the model operator +=

m += xsum(w*x[i] for i in range(n))

Note that the only difference of adding a constraint is the lack of a sense and a rhs.

Return type mip.LinExpr

property objective_bound
A valid estimate computed for the optimal solution cost, lower bound in the case of minimiza-
tion, equals to objective_value if the optimal solution was found.

Return type Optional[Real]

property objective_const
Returns the constant part of the objective function

Return type float

property objective_value
Objective function value of the solution found or None if model was not optimized

Return type Optional[Real]

property objective_values
List of costs of all solutions in the solution pool

Return type List[Real]

Returns costs of all solutions stored in the solution pool as an array from 0 (the
best solution) to num_solutions -1.

property opt_tol
Maximum reduced cost value for a solution of the LP relaxation to be considered optimal.
Default value: 1e-6. Tightening this value can increase the numerical precision but also
probably increase the running time. As floating point computations always involve some loss
of precision, values too close to zero will likely render some models impossible to optimize.

Return type float

optimize(max_seconds=inf, max_nodes=1073741824, max_solutions=1073741824,
max_seconds_same_incumbent=inf, max_nodes_same_incumbent=1073741824,
relax=False)

Optimizes current model

Optimizes current model, optionally specifying processing limits.
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To optimize model m within a processing time limit of 300 seconds:

m.optimize(max_seconds=300)

Parameters

• max_seconds (numbers.Real ) – Maximum runtime in seconds (default: inf)

• max_nodes (int ) – Maximum number of nodes (default: inf)

• max_solutions (int ) – Maximum number of solutions (default: inf)

• max_seconds_same_incumbent (numbers.Real ) – Maximum time in seconds
that the search can go on if a feasible solution is available and it is not being
improved

• max_nodes_same_incumbent (int ) – Maximum number of nodes that the
search can go on if a feasible solution is available and it is not being improved

• relax (bool ) – if true only the linear programming relaxation will be solved,
i.e. integrality constraints will be temporarily discarded.

Returns optimization status, which can be OPTIMAL(0), ERROR(-1), INFEASI-
BLE(1), UNBOUNDED(2). When optimizing problems with integer variables
some additional cases may happen, FEASIBLE(3) for the case when a feasible
solution was found but optimality was not proved, INT_INFEASIBLE(4) for
the case when the lp relaxation is feasible but no feasible integer solution exists
and NO_SOLUTION_FOUND(5) for the case when an integer solution was not
found in the optimization.

Return type mip.OptimizationStatus

property preprocess
Enables/disables pre-processing. Pre-processing tries to improve your MIP formulation. -1
means automatic, 0 means off and 1 means on.

Return type int

property pump_passes
Number of passes of the Feasibility Pump [FGL05] heuristic. You may increase this value if
you are not getting feasible solutions.

Return type int

read(path)
Reads a MIP model or an initial feasible solution.

One of the following file name extensions should be used to define the contents of
what will be loaded:

.lp mip model stored in the LP file format

.mps mip model stored in the MPS file format

.sol initial integer feasible solution

.bas optimal basis for the linear programming relaxation.

Note: if a new problem is readed, all variables, constraints and parameters from the current
model will be cleared.

Parameters path (str ) – file name

relax()
Relax integrality constraints of variables

Changes the type of all integer and binary variables to continuous. Bounds are preserved.
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remove(objects)
removes variable(s) and/or constraint(s) from the model

Parameters objects (Union [ mip.Var, mip.Constr, List [ Union [ mip.Var,
mip.Constr] ] ] ) – can be a Var , a Constr or a list of these objects

property round_int_vars
MIP solvers perform computations using limited precision arithmetic. Thus a variable with
value 0 may appear in the solution as 0.000000000001. Thus, comparing this var to zero would
return false. The safest approach would be to use something like abs(v.x) < 1e-7. To simplify
code the solution value of integer variables can be automatically rounded to the nearest integer
and then, comparisons like v.x == 0 would work. Rounding is not always a good idea specially
in models with numerical instability, since it can increase the infeasibilities.

Return type bool

property search_progress_log
Log of bound improvements in the search. The output of MIP solvers is a sequence of im-
proving incumbent solutions (primal bound) and estimates for the optimal cost (dual bound).
When the costs of these two bounds match the search is concluded. In truncated searches, the
most common situation for hard problems, at the end of the search there is a gap between
these bounds. This property stores the detailed events of improving these bounds during the
search process. Analyzing the evolution of these bounds you can see if you need to improve
your solver w.r.t. the production of feasible solutions, by including an heuristic to produce a
better initial feasible solution, for example, or improve the formulation with cutting planes,
for example, to produce better dual bounds. To enable storing the search_progress_log
set store_search_progress_log to True.

Return type mip.ProgressLog

property seed
Random seed. Small changes in the first decisions while solving the LP relaxation and the
MIP can have a large impact in the performance, as discussed in [Fisch14]. This behaviour
can be exploited with multiple independent runs with different random seeds.

Return type int

property sense
The optimization sense

Return type str

Returns the objective function sense, MINIMIZE (default) or (MAXIMIZE)

property sol_pool_size
Maximum number of solutions that will be stored during the search. To check how many
solutions were found during the search use num_solutions() .

Return type int

property start
Initial feasible solution

Enters an initial feasible solution. Only the main binary/integer decision variables which
appear with non-zero values in the initial feasible solution need to be informed. Auxiliary or
continuous variables are automatically computed.

Return type Optional[List[Tuple[mip.Var , numbers.Real]]]

property status
optimization status, which can be OPTIMAL(0), ERROR(-1), INFEASIBLE(1), UN-
BOUNDED(2). When optimizing problems with integer variables some additional cases may
happen, FEASIBLE(3) for the case when a feasible solution was found but optimality was
not proved, INT_INFEASIBLE(4) for the case when the lp relaxation is feasible but no fea-
sible integer solution exists and NO_SOLUTION_FOUND(5) for the case when an integer
solution was not found in the optimization.
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Return type mip.OptimizationStatus

property store_search_progress_log
Wether search_progress_log will be stored or not when optimizing. Default False. Activate
it if you want to analyze bound improvements over time.

Return type bool

property threads
number of threads to be used when solving the problem. 0 uses solver default configuration,
-1 uses the number of available processing cores and ≥ 1 uses the specified number of threads.
An increased number of threads may improve the solution time but also increases the memory
consumption.

Return type int

translate(ref )
Translates references of variables/containers of variables from another model to this model.
Can be used to translate references of variables in the original model to references of variables
in the pre-processed model.

Return type Union[List[Any], Dict[Any, Any], mip.Var ]

validate_mip_start()
Validates solution entered in MIPStart

If the solver engine printed messages indicating that the initial feasible solution that you
entered in start is not valid then you can call this method to help discovering which set of
variables is causing infeasibility. The current version is quite simple: the model is relaxed and
one variable entered in mipstart is fixed per iteration, indicating if the model still feasible or
not.

var_by_name(name)
Searchers a variable by its name

Return type Optional[mip.Var ]

Returns Variable or None if not found

property verbose
0 to disable solver messages printed on the screen, 1 to enable

Return type int

write(file_path)
Saves a MIP model or an initial feasible solution.

One of the following file name extensions should be used to define the contents of
what will be saved:

.lp mip model stored in the LP file format

.mps mip model stored in the MPS file format

.sol initial feasible solution

.bas optimal basis for the linear programming relaxation.

Parameters file_path (str ) – file name
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9.2 LinExpr

class LinExpr(variables=None, coeffs=None, const=0.0, sense='')
Linear expressions are used to enter the objective function and the model constraints. These
expressions are created using operators and variables.

Consider a model object m, the objective function of m can be specified as:

m.objective = 10*x1 + 7*x4

In the example bellow, a constraint is added to the model

m += xsum(3*x[i] i in range(n)) - xsum(x[i] i in range(m))

A constraint is just a linear expression with the addition of a sense (==, <= or >=) and a right
hand side, e.g.:

m += x1 + x2 + x3 == 1

If used in intermediate calculations, the solved value of the linear expression can be obtained with
the x parameter, just as with a Var.

a = 10*x1 + 7*x4
print(a.x)

add_const(val)
adds a constant value to the linear expression, in the case of a constraint this correspond to
the right-hand-side

Parameters val (numbers.Real ) – a real number

add_expr(expr, coeff=1)
Extends a linear expression with the contents of another.

Parameters

• expr (LinExpr) – another linear expression

• coeff (numbers.Real ) – coefficient which will multiply the linear expression
added

add_term(term, coeff=1)
Adds a term to the linear expression.

Parameters

• expr (Union [ mip.Var, LinExpr, numbers.Real ] ) – can be a variable, an-
other linear expression or a real number.

• coeff (numbers.Real ) – coefficient which will multiply the added term

add_var(var, coeff=1)
Adds a variable with a coefficient to the linear expression.

Parameters

• var (mip.Var) – a variable

• coeff (numbers.Real ) – coefficient which the variable will be added

property const
constant part of the linear expression

Return type Real

equals(other)
returns true if a linear expression equals to another, false otherwise
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Return type bool

property expr
the non-constant part of the linear expression

Dictionary with pairs: (variable, coefficient) where coefficient is a real number.

Return type Dict[mip.Var , numbers.Real]

property model
Model which this LinExpr refers to, None if no variables are involved.

Return type Optional[mip.Model ]

property sense
sense of the linear expression

sense can be EQUAL(“=”), LESS_OR_EQUAL(“<”), GREATER_OR_EQUAL(“>”) or
empty (“”) if this is an affine expression, such as the objective function

Return type str

set_expr(expr)
Sets terms of the linear expression

Parameters expr (Dict [ mip.Var, numbers.Real ] ) – dictionary mapping vari-
ables to their coefficients in the linear expression.

property violation
Amount that current solution violates this constraint

If a solution is available, than this property indicates how much the current solution violates
this constraint.

Return type Optional[Real]

property x
Value of this linear expression in the solution. None is returned if no solution is available.

Return type Optional[Real]

9.3 LinExprTensor

class LinExprTensor

9.4 Var

class Var(model, idx)
Decision variable of the Model . The creation of variables is performed calling the add_var() .

property column
Variable coefficients in constraints.

Return type mip.Column

property lb
Variable lower bound.

Return type Real

property model
Model which this variable refers to.

Return type mip.Model
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property name
Variable name.

Return type str

property obj
Coefficient of variable in the objective function.

Return type Real

property rc
Reduced cost, only available after a linear programming model (only continuous variables) is
optimized. Note that None is returned if no optimum solution is available

Return type Optional[Real]

property ub
Variable upper bound.

Return type Real

property var_type
Variable type, (‘B’) BINARY, (‘C’) CONTINUOUS and (‘I’) INTEGER.

Return type str

property x
Value of this variable in the solution. Note that None is returned if no solution is not available.

Return type Optional[Real]

xi(i)
Value for this variable in the 𝑖-th solution from the solution pool. Note that None is returned
if the solution is not available.

Return type Optional[Real]

9.5 Constr

class Constr(model, idx, priority=None)
A row (constraint) in the constraint matrix.

A constraint is a specific LinExpr that includes a sense (<, > or == or less-or-equal, greater-or-
equal and equal, respectively) and a right-hand-side constant value. Constraints can be added to
the model using the overloaded operator += or using the method add_constr() of the Model class:

m += 3*x1 + 4*x2 <= 5

summation expressions are also supported:

m += xsum(x[i] for i in range(n)) == 1

property expr
Linear expression that defines the constraint.

Return type mip.LinExpr

property name
constraint name

Return type str

property pi
Value for the dual variable of this constraint in the optimal solution of a linear programming
Model . Only available if a pure linear programming problem was solved (only continuous
variables).
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Return type Optional[Real]

property priority
priority value

Return type ConstraintPriority

property rhs
The right-hand-side (constant value) of the linear constraint.

Return type Real

property slack
Value of the slack in this constraint in the optimal solution. Available only if the formulation
was solved.

Return type Optional[Real]

9.6 Column

class Column(constrs=None, coeffs=None)
A column contains all the non-zero entries of a variable in the constraint matrix. To create a
variable see add_var() .

9.7 ConflictGraph

class ConflictGraph(model)
A conflict graph stores conflicts between incompatible assignments in binary variables.

For example, if there is a constraint 𝑥1 +𝑥2 ≤ 1 then there is a conflict between 𝑥1 = 1 and 𝑥2 = 1.
We can state that 𝑥1 and 𝑥2 are conflicting. Conflicts can also involve the complement of a binary
variable. For example, if there is a constraint 𝑥1 ≤ 𝑥2 then there is a conflict between 𝑥1 = 1 and
𝑥2 = 0. We now can state that 𝑥1 and ¬𝑥2 are conflicting.

conflicting(e1, e2)
Checks if two assignments of binary variables are in conflict.

Parameters

• e1 (Union [ mip.LinExpr, mip.Var] ) – binary variable, if assignment to be
tested is the assignment to one, or a linear expression like x == 0 to indicate
that conflict with the complement of the variable should be tested.

• e2 (Union [ mip.LinExpr, mip.Var] ) – binary variable, if assignment to be
tested is the assignment to one, or a linear expression like x == 0 to indicate
that conflict with the complement of the variable should be tested.

Return type bool

conflicting_assignments(v)
Returns from the conflict graph all assignments conflicting with one specific assignment.

Parameters v (Union [ mip.Var, mip.LinExpr] ) – binary variable, if assignment
to be tested is the assignment to one or a linear expression like x == 0 to indicate
the complement.

Return type Tuple[List[mip.Var ], List[mip.Var ]]

Returns Returns a tuple with two lists. The first one indicates variables whose
conflict occurs when setting them to one. The second list includes variable whose
conflict occurs when setting them to zero.
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9.8 VarList

class VarList(model)
List of model variables (Var ).

The number of variables of a model m can be queried as len(m.vars) or as m.num_cols.

Specific variables can be retrieved by their indices or names. For example, to print the lower bounds
of the first variable or of a varible named z, you can use, respectively:

print(m.vars[0].lb)

print(m.vars['z'].lb)

9.9 ConstrList

class ConstrList(model)
List of problem constraints

9.10 ConstrsGenerator

class ConstrsGenerator
Abstract class for implementing cuts and lazy constraints generators.

generate_constrs(model, depth=0, npass=0)
Method called by the solver engine to generate cuts or lazy constraints.

After analyzing the contents of the solution in model variables vars , whose solution
values can be queried with the x attribute, one or more constraints may be gener-
ated and added to the solver with the add_cut() method for cuts. This method
can be called by the solver engine in two situations, in the first one a fractional so-
lution is found and one or more inequalities can be generated (cutting planes) to
remove this fractional solution. In the second case an integer feasible solution is
found and then a new constraint can be generated (lazy constraint) to report that
this integer solution is not feasible. To control when the constraint generator will
be called set your ConstrsGenerator object in the attributes cuts_generator or
lazy_constrs_generator (adding to both is also possible).

Parameters

• model (mip.Model) – model for which cuts may be generated. Please note
that this model may have fewer variables than the original model due to pre-
processing. If you want to generate cuts in terms of the original variables, one
alternative is to query variables by their names, checking which ones remain in
this pre-processed problem. In this procedure you can query model properties
and add cuts (add_cut() ) or lazy constraints (add_lazy_constr() ), but you
cannot perform other model modifications, such as add columns.

• depth (int ) – depth of the search tree (0 is the root node)

• npass (int ) – current number of cut passes in this node
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9.11 IncumbentUpdater

class IncumbentUpdater(model)
To receive notifications whenever a new integer feasible solution is found. Optionally a new im-
proved solution can be generated (using some local search heuristic) and returned to the MIP
solver.

update_incumbent(objective_value, best_bound, solution)
Method that is called when a new integer feasible solution is found

Parameters

• objective_value (float ) – cost of the new solution found

• best_bound (float ) – current lower bound for the optimal solution cost

• solution (List [ Tuple [ mip.Var, float ] ] ) – non-zero variables in the so-
lution

Return type List[Tuple[mip.Var , float]]

9.12 CutType

class CutType(value)
Types of cuts that can be generated. Each cut type is an implementation in the COIN-OR Cut
Generation Library. For some cut types multiple implementations are available. Sometimes these
implementations were designed with different objectives: for the generation of Gomory cutting
planes, for example, the GMI cuts are focused on numerical stability, while Forrest’s implementation
(GOMORY) is more integrated into the CBC code.

CLIQUE = 12
Clique cuts [Padb73].

FLOW_COVER = 5
Lifted Simple Generalized Flow Cover Cut Generator.

GMI = 2
Gomory Mixed Integer cuts [Gomo69], as implemented by Giacomo Nannicini, focusing on
numerically safer cuts.

GOMORY = 1
Gomory Mixed Integer cuts [Gomo69], as implemented by John Forrest.

KNAPSACK_COVER = 14
Knapsack cover cuts [Bala75].

LATWO_MIR = 8
Lagrangean relaxation for two-phase Mixed-integer rounding cuts, as in LAGomory

LIFT_AND_PROJECT = 9
Lift-and-project cuts [BCC93], implemented by Pierre Bonami.

MIR = 6
Mixed-Integer Rounding cuts [Marc01].

ODD_WHEEL = 13
Lifted odd-hole inequalities.

PROBING = 0
Cuts generated evaluating the impact of fixing bounds for integer variables

RED_SPLIT = 3
Reduce and split cuts [AGY05], implemented by Francois Margot.
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RED_SPLIT_G = 4
Reduce and split cuts [AGY05], implemented by Giacomo Nannicini.

RESIDUAL_CAPACITY = 10
Residual capacity cuts [AtRa02], implemented by Francisco Barahona.

TWO_MIR = 7
Two-phase Mixed-integer rounding cuts.

ZERO_HALF = 11
Zero/Half cuts [Capr96].

9.13 CutPool

class CutPool

add(cut)
tries to add a cut to the pool, returns true if this is a new cut, false if it is a repeated one

Parameters cut (mip.LinExpr) – a constraint

Return type bool

9.14 OptimizationStatus

class OptimizationStatus(value)
Status of the optimization

CUTOFF = 7
No feasible solution exists for the current cutoff

ERROR = -1
Solver returned an error

FEASIBLE = 3
An integer feasible solution was found during the search but the search was interrupted before
concluding if this is the optimal solution or not.

INFEASIBLE = 1
The model is proven infeasible

INT_INFEASIBLE = 4
A feasible solution exist for the relaxed linear program but not for the problem with existing
integer variables

LOADED = 6
The problem was loaded but no optimization was performed

NO_SOLUTION_FOUND = 5
A truncated search was executed and no integer feasible solution was found

OPTIMAL = 0
Optimal solution was computed

UNBOUNDED = 2
One or more variables that appear in the objective function are not included in binding
constraints and the optimal objective value is infinity.
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9.15 SearchEmphasis

class SearchEmphasis(value)
An enumeration.

DEFAULT = 0
Default search emphasis, try to balance between improving the dual bound and producing
integer feasible solutions.

FEASIBILITY = 1
More aggressive search for feasible solutions.

OPTIMALITY = 2
Focuses more on producing improved dual bounds even if the production of integer feasible
solutions is delayed.

9.16 LP_Method

class LP_Method(value)
Different methods to solve the linear programming problem.

AUTO = 0
Let the solver decide which is the best method

BARRIER = 3
The barrier algorithm

DUAL = 1
The dual simplex algorithm

PRIMAL = 2
The primal simplex algorithm

9.17 ProgressLog

class ProgressLog
Class to store the improvement of lower and upper bounds over time during the search. Results
stored here are useful to analyze the performance of a given formulation/parameter setting for
solving a instance. To be able to automatically generate summarized experimental results, fill the
instance and settings of this object with the instance name and formulation/parameter setting
details, respectively.

log
List of tuples in the format (𝑡𝑖𝑚𝑒, (𝑙𝑏, 𝑢𝑏)), where 𝑡𝑖𝑚𝑒 is the processing time in seconds and
𝑙𝑏 and 𝑢𝑏 are the lower and upper bounds, respectively

Type List[Tuple[float, Tuple[float, float]]]

instance
instance name

Type str

settings
identification of the formulation/parameter settings used in the optimization (whatever is
relevant to identify a given computational experiment)

Type str

read(file_name)
Reads a progress log stored in a file
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write(file_name='')
Saves the progress log. If no extension is informed, the .plog extension will be used. If only
a directory is informed then the name will be built considering the instance and settings
attributes

9.18 Exceptions

class MipBaseException
Base class for all exceptions specific to Python MIP. Only sub-classes of this exception are raised.
Inherits from the Python builtin Exception.

class ProgrammingError
Exception that is raised when the calling program performs an invalid or nonsensical operation.
Inherits from mip.MipBaseException .

class InterfacingError
Exception that is raised when an unknown error occurs while interfacing with a solver. Inherits
from mip.MipBaseException .

class InvalidLinExpr
Exception that is raised when an invalid linear expression is created. Inherits from mip.
MipBaseException .

class InvalidParameter
Exception that is raised when an invalid/non-existent parameter is used or set. Inherits from
mip.MipBaseException .

class ParameterNotAvailable
Exception that is raised when some parameter is not available or can not be set. Inherits from
mip.MipBaseException .

class InfeasibleSolution
Exception that is raised the produced solution is unfeasible. Inherits from mip.MipBaseException .

class SolutionNotAvailable
Exception that is raised when a method that requires a solution is queried but the solution is not
available. Inherits from mip.MipBaseException .

9.19 Useful functions

minimize(objective)
Function that should be used to set the objective function to MINIMIZE a given linear expression
(passed as argument).

Parameters objective (Union [ mip.LinExpr, Var] ) – linear expression

Return type mip.LinExpr

maximize(objective)
Function that should be used to set the objective function to MAXIMIZE a given linear expression
(passed as argument).

Parameters objective (Union [ mip.LinExpr, Var] ) – linear expression

Return type mip.LinExpr

xsum(terms)
Function that should be used to create a linear expression from a summation. While the python
function sum() can also be used, this function is optimized version for quickly generating the linear
expression.

Parameters terms – set (ideally a list) of terms to be summed
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Return type mip.LinExpr

compute_features(model)
This function computes instance features for a MIP. Features are instance characteristics, such as
number of columns, rows, matrix density, etc. These features can be used in machine learning
algorithms to recommend parameter settings. To check names of features that are computed in
this vector use features()

Parameters model (Model) – the MIP model were features will be extracted

Return type List[float]

features()
This function returns the list of problem feature names that can be computed compute_features()

Return type List[str]
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